
B 1 Background Set Theory

Introduction

The aims of this appendix are to make clear to the reader how
much knowledge of set theory is needed to understand this book,
to catalogue the notation used that may not be standard and to
present a proof of an important result due to Rieger that is not
easily found elsewhere.

The reader will need to have seen something of the devel-
opment of axiomatic set theory presented in textbooks such as
(Enderton 1977, Halmos 1960). A summary of this material
may be found in Chapter I of the excellent book (Kunen 1980).
Chapters III and IV of that book form a convenient reference
for additional material that it would be good for the reader to
have seen. Certainly any reader who has read those chapters
will find little difficulty with the contents of this book. Another
worthwhile reference is (Shoenfield 1977).

I make free use of classes in this book, although I claim to
be working informally in the axiomatic set theory, ZFC-. The
reader unfamiliar with this strategy should consult one of the
above references. In part three familiarity with some of the lan-
guage of category theory is needed. Very little standard category
theory is really required, but the reader has to be prepared to con-
sider functors on the superlarge category of classes. I found the
book (Adamek  1983) helpful because it contains an investigation
of certain types of functor on the category of sets.

N o t a t i o n

The examples in chapter 1 of this book make use of the standard
set theoretical representation of the natural numbers and ordered
pairs. So the sets 0, {0},  (0, (0, {0}},. . . are used to represent the



natural numbers 0, 1, 2,. . . and in general the natural number n
is represented by the set {m 1 m < n} of natural numbers less
than n. The ordered pair (a, b) is represented, as usual, by the set
{{a},{a,b}),andtheorderedn-tuple(a~,a~,...,a,-~,a,)canbe
represented, in terms of ordered pairs as (al, (a~, . . . , (a,-~,  a,))).

Many of the standard operations on sets carry over in a nat-
ural way to classes. So, for classes AI, . . . A, we have the classes

Alu . . - u A,,

Aln...nA,,

Alx...  x A,

defined in the expected way. It will also be useful to have their
disjoint union,

Al +...+A, = ((1) x Ar)u~~~({n} x An).

For classes A, B their set difference will be written A-B = {z E
A 1 x 4 B). The universal class of all sets is V. The power-class
of a class A is the class powA = {x E V 1 x E A} of all subsets
of A.

A relation is a class of ordered pairs; i.e. R is a relation if
R E V x V. If R is a relation then xRy is written for (x, y) E R
and the inverse of R is the relation R-’ = {(y,x) 1 xRy}. A
relation R has domain domR  = {x 1 xRy for some y} and range
ranR = {y 1 xRy for some x}. The relational composition of
relations R and S is the relation

R I S = {(x,2) I xRy & yRz for some y}.

The membership relation E is the class ((2, y) I x E y}, and for
each class A put CA = E n(A x A).

For classes A, I? a function f : A -+ B is a relation f C A x B
such that for each Q E A there is a unique b E B such that
afb. This unique b is written fa or also f(a). If X S A t h en
the restriction of ‘f to X is the map f 1 X : X + B, given by
frX = j n (X x B). If Y C B then it’s inverse image under
f is f-‘Y = {x E A I fx E Y}. If A E B and f : A + B
such that fx = x for all x E A then f is an inclusion map and
is written f : A q B. If f : A + B and g : B ---) C then their
function composition g o f : A + C is given by

(9ofb = s(f4 for all x E A.
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If A is a class and I is a set then A’ is the class of all the functions
f:I-+A.

If A is a class of sets then

U A = {x I x E a for some a E A},

nA =  {xlz~aforallaEA}.

For each class I a family of classes, Ai for i E I, indexed by
the class I can be represented as a relation A E I x V, with
Ai = {x I iAx} for each i E I. Given such a family of classes

U Ai = {X I x E Ai for some i E I},
iEI

n Ai = {x I x E A; for all i E I},
iEI

c A; = U{ 1i XAi,
iEI iEI

and if I is a set,

nAi = {fE(UAi)‘(fiEAiforalliEI}.
$1 iEI

Occasionally it is convenient to consider mathematical struc-
tures having a proper class A as universe. It is usual to keep to the
usual tupling notation (A,. . .) for such a structure, even though
the standard definition of tuples only applies to sets. This can
be understood as the class A + R + - - ., using the disjoint union
operation. A class that is actually a set is also called a small
class, and a structure whose universe is small is called a small
structure. All the functions and relations that make up a small
structure will also be small.

In part III set continuous operators @ are used. These assign
a class 9X to each class X. Because of the set continuity property
the operator can be represented as the class

8 =  {(W)  I CJ E @x},
,. a

,

as then for each class X

+X = {o I a&x for some 2 E powX}.
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Well-Foundedness

A relation R is well-founded if there is no infinite sequence alI.
aI,. . such that a,+lRa,  for n = 0, I,. . . . A set a is well-founded
if there is no infinite sequence a~, al,. . . such that a() E CI and
a,+~ E a, for n = 0, 1, . . . . V,f is the class of all the well-founded
sets.

A class A is transitive if A C powA; i.e. every element of A
is a subset of A. For transitive classes A we have the following
principles, provided that the elements of A are all well-founded
sets.

Set Induction on A:
For any class B if

a c B ==+-  a E B for all a E A

then A 2 B.

Set Recursion on A:
To uniquely define F : A -+ V it suffices  to define Fu in terms of
F t a for each a E A.

The following important result plays a special role in chapter 1. 3zVx[ (Vu E X)(U  E u) + x E 2 ]

Mostowsky’s Collapsing Lemma:
If R is a well-founded relation on the set A then there is a unique
function f : A + V such that for all a E A

Ju = {fx 1 xRa}.

The assumption that the class A is a set can be dropped provided
it is assumed instead that {z 1 d&z}  is a set for each a E A; i.e.
that (A, R) is a system in the sense of chapter 1.

We will use the standard von Neumann treatment of the or-
dinals, so that an ordinal (Y is identified with the set {p ( /3 < a}
of it’s predecessors. So the class On of ordinals is defined to be
the class of well-founded transitive sets, all of whose elements are
also transitive.

The Axiomatisation of Set Theory

We take a standard first order language for set theory that just
has the binary predicate symbols ‘=’ and ‘E’. We assume a stan-
dard axiomatisation of first order logic with equality. Also we
use the standard abbreviations for the restricted quantifiers

def
VXEU... = Vz(x  E a --+ . * .),

def
3xEa.e.  = 32(a: E a  & * -).

In the following list of non-logical axioms for ZFC- we have
avoided the use of any other abbreviations.

Extensionality:
Vz(z E a ++ z E b) --t a = b

Pairing:
3z[u&z&bEz]

Union:
3z(Vz E u)(Vy E z)(y E 2)

Powerset :

Infinity:
3z[ (3s E z)Vy1(y E x) AZ (Vz E z)(3y E z)(z E y) ]

Separation:
3zVz(  2 E z f-1 5 E a 82 cp ]

Collection:
(Vz E u)3y  cp ---) 3z(Vz E a)(3y E z) cp

Choice:
(Vx E 43Y(Y E 4
& (VXl E a)(Vx2  E a)[ 3y(y E x1 & y E 52)  + 21 = 22 I

--+ 34vx E u)(3y E z)(Vv E x)[ ‘u. E z t-) 21= y ]
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The choice axiom is abbreviated AC. Separation and (lollrction
are schemes in which cp can be any formula iu which t hc variatJlr~
z does not occur free. 22%’  is ZFC- together with the following
axiom.

Foundation:
3x(2 E u) --+ (3s E u)(Vy E +(y E u).

This axiom is abbreviated FA.
Z’FC has usually been formulated using the axiom scheme of

replacement rather than the collection scheme used here. This
makes no difference to the theorems of ZFC, but it probably does
to the theorems of ZFC-, as while each instance of replacement
can easily be proved .from collection, the usual proof of each in-
stance of collection in ZFC  makes essential use of FA. I prefer
to take the apparently stronger collection scheme.

Global Choice and Quotients

When working with classes it is sometimes convenient to be able
to use a global form of AC. The form that is used in this book is

I/Son.

This expresses that there is a bijection between the universe and
the class On of ordinals. This axiom cannot be formulated in the
language of set theory alone but an additional predicate symbol
is needed for the bijection and the axiom schemes of ZFC- need
to be extended to the larger language. A fairly cavalier approach
to the use of AC is taken in this book. The stronger global form
is used whenever it appears needed. One use of global choice
is in the formation of the quotient of a class by an equivalence
relation. In many situations this use can be avoided. If R is
an equivalence relation on the class A we will call f : A -+ B
a quotient of A with respect to R if f is surjective and for all
al,az E A

aIRa _ ful =  fa2.

Using global AC a quotient can be obtained as follows. The
bijection between V and On determines a well-ordering of V.
For each a E A let fu be the least set b in the well-ordering
such that 6 E A and aRb. When A is a set, or more generally
when each equivalence class {z 1 xRu} is a set, we can follow the

familiar procedure of defing fu to be the equivalence class

1 I!)

of a.

This method works in ZF;  i.e. ZFC  without FA or AC. J?o:or
equivalence relations on a class A in general there is a trick to
get a quotient, due to Dana Scott, that makes essential use of
FA. The trick is to define fa to be the subset of the equivalence
class (z 1 zRu}  consisting of those elements of the equivalence
class having the least possible rank in the cumulative hierarchy
of well-founded sets. In ZFC-  this trick is no longer available,
but often a slight variation of the trick will work. For example if
A is the class of linearly ordered sets and R is the isomorphism
relation between linearly ordered sets then if a E A we can let fu
be the set of linear orderings of the ordinal a that are isomorphic
to the linearly ordered set a, where Q is the least possible ordinal
for which there is such a linear ordering of QI. This works because
by AC every set is in one-one correspondence with an ordinal.

Rieger’s Theorem

Here we will prove the result that gives a general method for giv-
ing interpretations of ZFC-. In order to interprete the language
of set theory all that is needed is a class M for the variables
to range over and a binary relation EMU M x M to interprete
the predicate symbol ‘E’. Now any system M, in the sense of
chapter 1, determines the binary relation EE/I given by

UEMb e uEbM.

We will show that this gives an interpretation of all the axioms
of ZFC- provided that the system is full. Recall from chapter 3
that a system M is full if for each set 2 C M there is a unique
a E M such that 5 = C&M. In the following we will let xM be this
unique a E M.

Rieger’s Theorem:
Every full system is a model of ZFC-.

Proof: Let M be a full system. We will consider each axiom of
ZFC- in turn.

l Extensionality: Let a, b E M such that

M b Vx(s E a H x E b).

Then a~ = bM, so that a = (a~)~ = (bM)M  = b and hence
M+a=6.
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Pairing: If a,b E M then c = {a, b}” E M is such that
M t= (a E c & b E c).
Union: Let a E M. Then U{~M  1 y E UM) is a subset x of
M so that if c = xM E M then M /= Vy E aVz E y(z E c).

Powerset: If a E M then c = {xM  1 x E a~[}~ E M is such
that

M~Vx[V~~x(z~u)--,x~c].

Infinity: Let

(

Ae = 0M

A,+-I = ((A,), U {An})M  for n = O,l,. . .

Then A, E M for each natural number n, so that

A,,, = {An ] n = 0, 1,. . .}M E M

is such that

M  /= [ Ao E Au & VY(Y  F’ Ao> 1
and

M /= Vx E Aw3y E A,(x E y).

l Separation: Let a E M and let cp be a formula containing at
most x free and perhaps constants for elements of M. Then

c = {b E UM ) M k cp[b/x]}M E M

is such that

M k Vx(x E c ++ x E a & cp).

l Collection: Let a E M and let cp be a formula containig  at
most x and y free and perhaps constants for elements of M.
Suppose that

M + Vx E u3y cp.

Then
V~EUM~~[~EM & Mkcp].

By the collection axiom scheme there is a set b such that

VxEu,dycb[yEM & M+q~]l.

hckgroud  bet 1 hrwry IL1

AsbnMisasubsetofMwemayformc=(bnM)”EM
such that

M + Vx E Ely E c cp.

l Choice: Let a E M such that

M t= Vx E u3y(y E x)

and

M  + (Vxr,x2 E a)[ 3y(y E x1 & y E x2) --t Xl = x2

Then
VXEUMXM#$

and for all xi, x2 E a~

(xl)M n (52)M # 0 * x1 = x2.

1.

Thus {XM 1 2 E UM}  is a set of non-empty pairwise  disjoint
sets. Hence by the axiom of choice there is a set b such that
for each x E oM the set bnxM  has a unique element cz E M.
Hence c = {cz 1 x E a~} E M such that

M t= Vx E u3y E XVU  E x[ u E c ++ u = y 1. cl


