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1 Introduction

This paper is the result of combining two traditions in formal logic: epistemic
logic and dynamic semantics.

Dynamic semantics is a branch of formal semantics that is concerned with
change, and more in particular with change of information. The main idea in
dynamic semantics is that the meaning of a syntactic unit—be it a sentence
of natural language or a computer program—is best described as the change it
brings about in the state of a human being or a computer. The motivation for,
and applications of this ‘paradigm-shift’ can be found in areas such as seman-
tics of programming languages (cf. Harel, 1984), default logic (Veltman, 1996),
pragmatics of natural language (Stalnaker, 1972) and of man-computer interac-
tion, theory of anaphora (Groenendijk and Stokhof, 1991) and presupposition
theory (Beaver, 1995). Van Benthem (1996) provides a survey.

This paper is firmly rooted in this paradigm, but at the same time it is much
influenced by another tradition: that of the analysis of epistemic logic in terms
of multi-modal Kripke models.

This paper is the result of combining these two traditions. It contains a
semantics and a deduction system for a multi-agent modal language extended
with a repertoire of programs that describe information change. The language is
designed in such a way that everything that is expressible in the object language
can be known or learned by each of the agents. The possible use of this system
is twofold: it might be used as a tool for reasoning agents in computer science
and it might be used as a logic for formalizing certain parts of pragmatics and
discourse theory.!

LAs a first step in this direction, Gerbrandy and Groeneveld (to appear) show how a logic
similar to the one introduced in this paper can be used to formalize the puzzles like the



The paper is organized as follows. The next section contains a short descrip-
tion of classical modal logic and introduces models based on non-well-founded
sets as an alternative to Kripke semantics. In the section after that I introduce
programs and their interpretation and I give a sound and complete axioma-
tization of the resulting logic in section 4. The last section is devoted to a
comparison with update semantics of Veltman (1996).

Finally, T would like to mention the dissertations of Groeneveld (1995), Jas-
pars (1994) and de Rijke (1992) and the book by Fagin, Halpern, Moses and
Vardi (1995) as precursors and sources of inspiration. The article by Willem
Groeneveld and me (to appear) contains some ideas similar to those presented
here.

2 Static Modal Semantics

The classical language of multi-modal logic is the following:

Definition 2.1 Let A be a set of agents and P a set of propositional variables.
The language of classical modal logic is given by:

Pu=p|lopAyY|-¢|T.p
where p € P and a € A.

One way of providing a semantics for this language is in terms of Kripke models.
A pointed Kripke model is a quadruple (W,{R,}qca,V,w), where W is a set
of possible worlds, w is a distinguished element of W (the point of evaluation),
R, is a relation on W for each a € A, V is a valuation function that assigns a
truth-value (either 0 or 1) to each pair of a world v € W and a propositional
variable p € P.

Intuitively, given a Kripke model and a world w in it, the information of an
agent a in w is represented by the set of worlds that are accessible from w via
R,; these worlds are the worlds compatible with a’s information in w.

Kripke models have been studied extensively and they provide a very per-
spicuous semantics for the classical language of epistemic logic. Unfortunately,
it turns out that Kripke-models are not very suitable structures for defining op-
erations that correspond to intuitive notions of information change.? To avoid
this problem, I use a different (but equivalent) representation.

Definition 2.2 Possibilities
Let A, a set of agents, and P, a set of propositional variables, be given. The
class of possibilities is the largest class such that:

Conway paradox or the puzzle of the dirty children.
2Cf. Groeneveld (1995) for a discussion of the problems one encounters.



e A possibility w is a function that assigns to each propositional variable
p € P a truth value w(p) € {0,1} and to each agent a € A an information
state w(a).

e An information state o is a set of possibilities.

A possibility w characterizes which propositions are true and which are false,
and it characterizes the information that each of the agents has in the form of an
information state o, that consists of the set of possibilities the agent considers
possible in w.3

This definition of possibilities should be read to range over the universe of
non-well-founded sets in the sense of Aczel (1988).* The form of this definition,
defining a set co-inductively as ‘the largest class such that....”; is a standard
form of definition in non-well-founded set theory.

Truth of classical modal sentences in a possibility can be defined in a way
analogous to the definition of truth for Kripke models.

Definition 2.3 Truth.
Let w be a possibility.

wi=p iff w(p) =1
wEANY ff wlEand wEY
wE-¢ ff wlpEe
whEOg iff forallvew(a):vEde@

It turns out that using possibilities instead of Kripke-models does not make an
essential logical difference: there is a close relation between possibilities and
pointed Kripke models.

Definition 2.4 Let K = (W, {R,}aca,V,w) be a pointed Kripke model.

o A decoration of K is a function d that assigns to each world v € W a
function with P U A as its domain, such that d(v)(p) = V(v,p) for each
p € P, and d(v)(a) = {d(u) | vRyu} for each a € A.

o If K= (W,{Rs}taca,V,w) is a Kripke model, and d is a decoration of it,
d(w) is its solution, and K is a picture of d(w).

A decoration of a Kripke model assigns to each possible world w in the model
a possibility that assigns the same truth-values to the propositional variables
as they get in the model at w, and that assigns to each agent a the set of
possibilities that are assigned to worlds accessible from w by R, .

The notions of solution and picture give us a correspondence between Kripke-
models and possibilities:

3In Aczel (1988) as well as in Barwise and Moss (1996) similar models are defined.
4To be precise, the underlying set-theory is axiomatized by ZFC~ (the Zermelo-Fraenkel
axioms without the axiom of foundation) plus Aczel’s Anti-Foundation Axiom (AFA).



Proposition 2.5
e Each Kripke model has a unique solution, which is a possibility.
e Each possibility has a Kripke model as its picture.

e Two Kripke-models are pictures of the same possibility iff they are bisim-
ilar.

Defining truth of a formula in a Kripke model in the standard way, it holds that:

Proposition 2.6 For each possibility w:
w = ¢ iff ¢ is true in each picture of w

So a possibility and a picture of it are descriptively equivalent. This means
that one can see possibilities as representatives of equivalence classes of Kripke
models under bisimulation.

3 Programs

In this section we will define operations on possibilities that correspond to
changes in the information states of the agents. The kind of information change
we want to model is that of agents getting new information or learning that the
information state of some other agent has changed in a certain way. I will in-
troduce ‘programs’ in the object language that describe such changes. Changes
in the ‘real world’ will not be modeled, and I will ignore other operations of
information change such as belief contraction or belief revision.

The programming language is built up as follows. There are programs of
the form ?7¢ for each sentence ¢. A program of the form ?¢ will be interpreted
as a test that succeeds in a possibility when ¢ is true and fails otherwise. The
language contains a program operator U, for each agent a. A program of the
form U,n corresponds to agent a learning that program =« has been executed.
Finally, the language contains two operators that combine programs to form
a new program: sequencing and disjunction. A program of the form m;7’ is
interpreted as: “first execute m, then 7’.” Disjunction is interpreted as choice:
m U’ corresponds to executing either 7 or 7'.

To connect the programming language to the ‘static part’ of the language,
we add a modal operator [7] for each program 7. Intuitively, a sentence [7]y
is true in a possibility just in case that after executing the program = in that
possibility, ¥ must be true. The set of programs is defined simultaneously with
the set of sentences in a way that might be familiar from propositional dynamic
logic (cf. for example Pratt, 1976 or Goldblatt, 1987).



Definition 3.1 Language.
Given a set of agents 4 and a set of propositional variables P, the set of sentences
of dynamic epistemic logic is the smallest set given by:

Qu=p|oAY || 00| 7]

where a € A, p € P, and 7 is any program. The set of programs is the smallest
set given by:
:=?¢ | Uy |mn |mrun

Programs are interpreted as relations over possibilities: a pair of possibilities
(w,v) will be in the denotation of a program = (written as w[r]v) just in case
the execution of the program 7 in possibility w may result in v. I propose
the following definition (in the definition, I use the abbreviation w[a]v for the
statement that w differs at most from v in the state it assigns to a):

Definition 3.2 Interpretation of programs.

w[?Plv  ff wlEPandw=v
wl[Upr]v  iff  wla]v and v(a) = {v' | ' € w(a) : w'[x]v'}
wlm;n'Jo iff  there is a u such that w[r]u[r'Jv

wlrun v iff  either w[r]v or w[r'Jv
Furthermore, the definition of truth is extended with the following clause:
wkE[rlg iff  for all v if w[r]v then v = ¢

Programs of the form U, 7 are to be read as “a learns that 7 has been executed,”
or, alternatively, as “a updates her information state with w.” This is modeled
as follows. Executing a program of the form U,7 in a possibility w results
in a new possibility v in which only a’s information state has changed. The
information state of a in v contains all and only those possibilities that are
the possible result of an execution of 7 in one of the possibilities that in a’s
information state in w. Note that a program of the form U,7 is deterministic;
in fact, [U,n] is always a total function, which means that the update always
exists, and the result is unique.

In the case that 7 is a test of the form 7¢, the result of executing U,7¢ is
such that in a’s new information state, all possibilities in which ¢ is not true are
discarded: the new information state of a contains only possibilities in which ¢
is true. So, one might say that U,7¢ corresponds to a getting the information
that ¢ is the case.

The programming language is constructed in such a way that each program
can be executed by each of the agents. This has the effect that any change
in the model that we can express as a program in the object language can be
‘learned’ by each of the agents. In particular, this means that each sentence can



be ‘learned’ by each of the agents, because there is a test 7¢ in the programming
language for each sentence ¢.

I will give some examples. A program of the form U,U,7p denotes the action
that a updates her state with the information that b has updated his information
state with 7p. This corresponds with a getting the information that b has gotten
the information that p is the case.

We can also express that a learns whether p is the case, a situation, for
example, of an agent a checking the value of a bit (p expressing that the value is
0, —p expressing it is 1) or of a philosopher looking out of the window to check
whether it rains. This corresponds to the program (?p; U,?p) U (?—p; U, ?—p): if
p is the case, a learns that p, and if p is not true, a learns that —p.

Conscious Updates

The resulting logic and semantics is very similar to the system ‘Multi-agent
Eliminative K’ from Groeneveld (1995, p. 157 ff.). It suffers from the same
kind of problems, most notably the fact that introspection is not preserved over
U,-updates. The problem is the following: if an agent a updates with m, she
will change all the possibilities in her information state in the way the program
tells her to. But each possibility in her information state also contains a repre-
sentation of her own information, and this representation does not necessarily
change: the possibilities in her new state will assign to a an information state
that does not correspond to the information she actually has.

An example might make the matter more clear. Let the class of introspective
possibilities be the largest class of possibilities w such that it holds that for
each agent a, v € w(a) implies that w(a) = v(a) and that v is an introspective
possibility. So, a possibility is introspective just in case the information state
of an agent a only contains possibilities in which a is assigned the information
state she is actually in. If a possibility w is introspective, all sentences of the
form O,¢ — O,0,¢, and all sentences of the form —-0,¢ — O,—-0,¢ are true.
Introspection is a property that is often associated with knowledge or with belief.
To give a plausible account of ‘learning’, one would like introspection to be a
property that is preserved over updates.

Unfortunately, this is not the case with U,-updates. For take an introspective
possibility w and suppose that w(a) contains both possibilities where p is true,
and where p is not true, i.e. it holds that w = —-O,p, w | -0O,-p, and hence
that w | O,-0gp.

Consider now the possibility that results from updating w with U,7p, i.e.
the unique possibility v such that w[U,?p]v. This is a possibility in which a
has got the information that p: v = O,p. But because each possibility in v(a)
also occurred in w(a), =O,p is true in each possibility in v(a). So, it holds that
v = O,-0,p, while it also holds that v = O,p.

To solve this problem, one would like that an update of a’s information
state with 7 not only changes each of a’s possibilities in accord with 7, but also



changes each of these updated possibilities to the effect that she has learned .
It turns out that it is not very hard to define a notion of update which reflects
this. I will refer to such an update as a ‘conscious update,” because it reflects the
idea that if a updates with 7, she is conscious of this fact.® I use the notation
Uy for a conscious update of a’s information state with .

Definition 3.3 Conscious update.
wlUn]v iff wla]v and v(a) = {v' | I’ € w(a) : W' [7][Usx]v"}

This definition is circular as it stands. Nevertheless, it is not very hard to prove
that for each program =« there is a unique relation [UXn] that conforms to the
definition.® Also, [U*7] is a total function for each 7.

The definition says that consciously updating a’s information state in a pos-
sibility w with 7 results in a possibility v that differs only from w in that all
possibilities in w(a) are first updated with «, and after that with Ufw. That
the interpretation of Um gives the effect of a conscious update is corroborated
by the fact that it holds that if a’s information in w is introspective, it is intro-
spective after the update of w with U}7¢.

Group Updates

Common knowledge is a concept that occurs under different names (mutual
knowledge, common ground) in the literature. The usual definition is that a
sentence ¢ is common knowledge in a group B just in case each agent in the
group knows that ¢ is the case, each agent knows that each of the other agents
knows that ¢, etcetera. As Barwise (1989) shows, a semantics based on non-
well-founded sets is quite useful for modeling this concept.

Instead of concentrating on this static notion of mutuality, I will introduce
the notion of a ‘group update’: an update with a program 7 in a group of agents
that has the effect of changing the state of each agent in the group in the way
described by 7 in such a way that each agent in the group is aware of the fact
that each agent has executed 7, each agent knows that each agent in the group
knows that 7 is executed by each agent in the group, etc. In case 7 is a test of
the form 7¢, a common update with 7¢ corresponds to the sentence ¢ becoming
common knowledge within the group.

To express this in the object language, I add program operators of the form
U} for each subset B of A to the language. They are interpreted as follows:

Definition 3.4 Group update
For each w and B C A:

w[Ugnv iff w[BJvand Va € B:

5The terminology is from Groeneveld (1995), who introduces a notion of conscious update
in a single agent setting.

6 A proof of the correctness of a similar definition can be found in Gerbrandy and Groeneveld
(to appear).



v(a) = {v' | ' € w(a) : W' [r][Uin]v"}

Updating a possibility with a program Ugm results in a possibility v that differs
only from w in that for each a € B, all situations in w(a) are first updated with
m, and then with Ugm.

Note that a group update in a group consisting of a single agent boils down to
the notion of a conscious update defined above: updating with U{*a}ﬁ is exactly
the same thing as updating with U} .

4 Axiomatization

The following set of axioms and rules provides a sound and complete charac-
terization of the set of sentences that are true in all possibilities. (For sake of
presentation, I have left out the conscious single agent updates, since they are
a special case of the group updates with a group consisting of a single agent. I
have also left out axioms for the non-conscious updates introduced in definition
3.2. The axioms for U, are just as those for U} ,, except for axiom 7, which

{a}’

should be changed into: F [U,w]0gt > Og[n]e).)

Axioms

p—

F ¢ if ¢ is valid in classical propositional logic.

2 FO,(¢p = ) = (O, — O,0)

3 F[x](¢ = ) = ([7]¢ — [x]s).

4 =[] < (¢ = ¢)

5 F =[Ugnl < [Ugn]—¢

6 - [Ugmlp ¢ p

7 F [Uim]|0a¢ < O,[7][Usn]e if a € B

8 F [Ujn]0add > Opdif a & B

9 +[m; 7] « [x][n']¢

10 - [x U ([l A []0)
Rules

MP ¢, 0 > o)

NecO If - ¢ then - O,¢
Nec[-] If ¢ then F [7]é
I' F ¢ iff there is derivation of ¢ from the premises in I' using the rules and

axioms above.

In addition to the rules and axioms of classical modal logic, the deduction
system consists of axioms describing the behavior of the program operators.



Axiom 3 and the rule Nec[] guarantee that the program operators behave as
normal modal operators. Axiom 4 says that performing a test 7¢ boils down
to checking whether ¢ is true. Axiom 5 reflects the fact that U}-updates are
total functions: an update with UYm always gives a unique result. This means
that if it is not the case that a certain sentence is true after an update with a
program of the form Upm, then it must be the case that the negation of that
sentence is true in the updated possibility, and vice versa. Axiom 6 expresses
that the update of an information state has no effect on the ‘real’ world; the
same propositional atoms will be true or false before and after an update. Axiom
7 expresses that after a group update with 7, an agent in the group knows that
1 just in case that agent already knew that after executing 7, an update with
Ujim could only result in a possibility in which ¢ were true. Axiom 8 expresses
that a group update has no effect on the information of agents outside of that
group. The axioms 9 and 10 govern the behavior of sequencing and disjunction
respectively.

Proposition 4.1 Soundness
ITF ¢ then T | ¢.

proof: By a standard induction. By way of illustration, I will show the cor-
rectness of axiom 5. In the proof, I make use of the fact that [Ujn] is a total
function for each 7, and write w[Ujx] for the unique v such that w[Ujn]v. The
following equivalences hold, if a € B:

wE [Usr]O.¢ it w[Uin] = Oud
ifft Vv e w[Ugn](a):vEé
iff Vo: if 3w’ € w(a) : w'[7][Usn]v then v = ¢
iff V' €w(a)Vu: if w'[r][Usr]v then v = ¢
iff Vo' €w(a):w' E [7][Usnle
i w e O [Ugals

Proposition 4.2 Completeness

If T |= ¢, then T .

proof: The completeness proof is rather long. I give here the main structure;
the details are delegated to the appendix.

The proof is a variation on the classical Henkin proof for completeness of
modal logic. It is easy to show that each consistent set can be extended to a
maximal consistent set (this will be referred to as ‘Lindenbaum’s Lemma’). We
must show that for each consistent set of sentences there is a possibility in which
these sentences are true. Completeness then follows by a standard argument.

Let, for each maximal consistent set Y, wy be that possibility such that
wx(p) = 1iff p € ¥, and for each agent a: wx(a) = {wr | T' is maximal



consistent and if O, € ¥, then ¢ € I'}.” We prove the usual truth lemma,
namely that for each sentence ¢ it holds that ¢ € ¥ iff wy | ¢.

The truth lemma is proven by an induction on the structure of ¢, in which
all cases are standard, except the case where ¢ is of the form [r]¢). The proof
for this case rests on the following idea. Just as membership in wy;(a) depends
on the formulae of the form O,¢ in X, the m-update of wsy, is closely related to
the formulae of the form [r]¢) in ¥. This is reflected by the following relation
between maximal consistent sets:

YR, iff T isa maximal consistent set and if [r]i) € ¥ then ¢p € T

I will prove in the appendix, as lemma A.1, that wy[nx]v iff there is a [’ such
that v = wr and ¥ R;I". The relevant step in the proof of the truth lemma then
runs as follows:

ws 1Y & wslr] E¢
& foreach I': if ¥R, then wr = ¢ (by lemma A.1)
& ¢ €T for each T such that ¥R, (by induction hypothesis)
& [m]y € ¥ (by definition of Ry)

5 Update Semantics

Update semantics, as it is presented in Veltman (1996), has been an important
source of inspiration for this paper. It turns out that update semantics can be
seen as a special case of the present approach: update semantics can be seen as
describing the updates of an information state of a single agent who has fully
introspective knowledge.

In update semantics, sentences are interpreted as functions that operate on
information states. Information states are sets of classical possible worlds. The
relevant definitions are the following:

Definition 5.1

o LU% is the language built up from a set of propositional variables P and
the connectives =, A and a unary sentence operator might in the obvious
way.8

e A classical information state s is a set of classical possible worlds, i.e. a
set of assignments of truth-values to the propositional variables.

"In the terminology of definition 2.4, this model is the solution of ¥ in the standard
canonical model for the minimal modal logic K.

8In Veltman’s paper the language is restricted to those sentences in which might occurs
only as the outermost operator in a sentence.

10



e For each sentence ¢ € LUS and each classical information state s, the

update of s with ¢, s[¢], is defined as:

slpl = {wes|wlp) =1}
slpAg] = s[¢]Ns[y]
s[m¢] = s\ s[¢]
s[might ¢] sif s[@] #0

= [ otherwise

e A sentence ¢ is accepted in an information state s, written as s = ¢, just in

case s[@]s. An argument ¢y ... P, /1 is valid, written as ¢; ... ¢, Evs ¥,
iff for each s: s[¢1]...[dn] = .

There is a close correspondence between updates of information states in update
semantics and consciously updating in possibilities in which agents have intro-
spective information. More precisely, we can associate with each introspective
possibility w and agent a a classical information state w®, which consists of the
set of classical worlds that correspond to the possibilities in w(a). Vice versa,
given a classical world w and an agent a, we can associate with each classical
information state s a possibility s, that assigns to each propositional variable
the same value as w does and that assigns to a a set containing a possibility
s% for each v € s (a classical information state does not provide us with any
information about which agent we are talking about, or what the ‘real world’
looks like, so we have to supply these parameters ourselves).
More formally:

Definition 5.2

e If w is a possibility and a an agent, then w® = {v restricted to P | v €
w(a)}.

e If s is a classical information state, w a classical possible world, and a an
agent, then s is a possibility such that s (p) = w(p) for each p € P, and

st(a) = {52 | v € 5).

It is not hard to see that s2 is an introspective possibility. The following propo-
sition expresses how US-updates can be viewed as conscious updates of an intro-
spective information state, if one reads —0O— for might . More precisely, seeing
a classical information state as the information state of a certain agent a, up-
dating such an information state with might ¢ in update semantics corresponds
to updating a’s information state with the test 7-0,—¢.

Proposition 5.3 For each ¢ € LU?, let ¢’ be just as ¢ but with all occurrences
of might replaced by —O,—. Then it holds that:

e For all classical information states s and ¢: s[@]t iff s%[Ur7¢']¢2,.

11



e For all possibilities w and v and each a such that a has introspective
information in w: w[UX?¢ v iff w*[p]v®.

® &1...¢n Evs ¢ iff for all introspective w: w | [UX?¢1]...[Us?¢.]0.4".

What this proposition expresses is that a US-update can be seen as a conscious
update of the information state of an agent who has fully introspective infor-
mation.

A Appendix

In this appendix, I will prove the lemma that was needed in the completeness
proof in section 4. The lemma is the following:

Lemma A.1 Let 7 be a program, and assume that for each maximal consistent

set of sentences ¥ and each subprogram of the form ?¢ of 7 it holds that wy, = ¢
iff » € 3. Then it holds for all X:

wy[r]v iff there is a T" such that ¥R, and v = wr

proof: The proof is by induction on the structure of =.

e Tests: 7 is of the form 7¢.
It follows by axiom 4 and maximality of ¥ that ¥R»,X iff ¢ € ¥. The
argument is then quite simple: wy[?¢]v iff v = wy and wy, E @ iff p € X
and 2R7¢E.

e Conscious updates: Ujgm. This step is proven in lemma A.3.

e Disjunction: 7 U 7'.

Assume wg[r Un'Jv. Then wx[r]v or ws[r']v. By induction hypothesis,
there must be a I' such that v = wr and ¥R, I’ or ¥R I'. To show that
YR;uxT take any [ U n'|¢p € X. Then [r]tp A 7] € T, and hence, by
maximality of ¥, both [7]¢) € ¥ and [7']¢p € . But that means, since
YR,T or YR T, that ¢ € T.

For the other direction, assume that it does not hold that wx[r U 7'Jwr.
Then neither wy[7]wr, nor ws[7'Jwr. So, by induction hypothesis, there
is a1 such that [7]¢ € X but ¢ € T, and there is a ¢’ such that [7']¢' € &
but ¥ ¢ ['. But then, [7](¢) V¢') € ¥ and [#'](¢ V ¢') € ¥, whence
[ UT'](¢ V') € L. But by maximality of ', =¢p A =)' € T, so it is not
the case that YR, T

e Sequencing: ;7.
Assume that wy[m;7']v. By induction hypothesis, there must be A and
T such that wy[r]wa[7'Jwr, and v = wr. Assume [7; 7]y € X. Then, by
induction hypothesis, [7']y) € A, and ¢ € T'. Since [¢; ¢']¢p was arbitrary,

12



it follows that ¥R, I

For the other direction, assume that ¥R, I'. This means that the set
{¢ | [7][7']¥ € X} is consistent (since it is a subset of '), and hence,
{¢ | [7]¥ € £} is consistent. But then there is a A such that ¥R;A and
AR, T. But then, by induction hypothesis, wy.[r]Jwa[7#'Jwr, and hence,
wy [rr; 7' Jwr.

Before giving the proof for the second step in the induction, I would like to
make a general remark about the method of proof that will be used. We will
prove that two possibilities are equal by showing that there exists a bisimulation
between them. A relation R is a bisimulation between possibilities iff for every
two possibilities w and v it holds that if wRwv, then (1) w(p) = v(p) for each
p € P, and (2) for each w' € w(a) there is a v’ € v(a) such that w'Rv’, and
(3) for each v' € v(a) there is a w' € w(a) such that w'Rv'. It turns out
that the following proposition, which is closely related to proposition 2.5, is a
consequence of the axiom of anti-foundation:

Proposition A.2 w = v iff there is a bisimulation R such that wRwv.

I will make use of this fact in the proof of the following lemma.

Lemma A.3 Fix any Ujm and assume that it holds that wx[r]v iff there is a I’
such that ¥R,T and v = wp. (This is the induction hypothesis of the previous
lemma.) It holds that:

wx [Ugr]v iff there is a T" such that v = wr and YRysI

proof: Note that by axiom 5, the set {¢ | [Ujn]yp € £} is maximal consistent
if ¥ is. That means that there always is a unique I' such that Ry« ~I'. This
implies that to prove the lemma, it is enough to show that if ws[Ujn]v, and
YRy L', then there is a bisimulation between v and wr. By proposition A.2
this shows that v and wr are in fact equal.

Given a program 7 and a set of agents B, define a relation R on possibilities

by

wRv iff w = v or there exist maximal consistent
sets ¥ and I" such that wy[Ugn]v, YRyz-I and w = wr

We will show that R is a bisimulation. Let wRv, and let ¥ and I' be such that
ws[Ugn]v, YRys-¥, and w = wr (the case that w = v is easy). We need to
show that the three clauses that define a bisimulation hold:

(1)
We first show that w(p) = v(p) for all p € P.
v(p) = 1iff we[Uxn](p) = 1 iff ws(p) =1 (by the semantics) iff p € ¥ (by the
definition of wy) iff p € Ujn(X) (by axiom 6) iff wr(p) = 1.
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Next we must show that for each a € A, if v’ € v(a) then there is a w' € wr(a)
such that w'Rv'. We distinguish two cases: a € B, and a ¢ B.

First assume that a ¢ B. It follows by axiom 8 that O, € ¥ iff Oy, € T,
which implies that wx(a) = wr(a). But by the definition of [Ujn] and the fact
that a ¢ B, we have wx(a) = v(a). That means that wr(a) = v(a), which is
sufficient, since by definition R includes the identity relation.

For the case that a € B, take any v' € v(a). We need to show that there
is a wpr € wr(a) such that wpRv'. The following picture might make matters
more clear.

wr wy, v
[Usm|peS = el [Usn]
a
a a
wyy
[~]
[UsmYEA = el [Us~] ,
wrr WA v

Since v’ € v(a), there must be, by definition of [Ujn], a ¥’ such that wss €
wy(a) and a u such that wsy [7]u[Uji7]v". By induction hypothesis, then, there
is a A such that ¥'R;A and u = wa. Take any such A and consider the set
I'" = {¢ | [Usw]yp € A}. By the functionality axiom 5, this set is maximal
consistent.. From the definition of A and I'V it then follows that wa [Ujn]v" and
that ARUgﬁF’, and hence that wpRv'.

To show that wrr € wr(a), take any Oy¢p € I'. Then [Ujn|O,¢ € ¥ (by
axiom 5), and by axiom 7, O,[n|[Ujn] € E. But then, [r][Ujn]y € ¥/, so
[Ujm|y € A, and hence, ¢ € T".

3)
Finally we must show that for each a € A, if w' € wr(a) then thereis a v’ € v(a)
such that w'Rv’.

If a & B, we can use the same argument as in case (2).

For the other case, take any I'" such that wrs € w(a), i.e. such that 0,1 €
I' = ¢ € I'. We need to find a v' € v(a) such that wr/Rv".

What we will do is show that there must exist maximal consistent sets X'
and A such that: (i) O, € £ = ¢ € X' (ii) [7]¢p € &' = ¢ € A and (iii)
[Uiprlp e A= p €T,
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From (i) it follows that wsy € wx(a) and from (ii) that ws[7]wa. Since
[Uin] is a total function, there must be a v’ such that wa[Ujn]v’, and since
ws [Ugr]v, it follows that v" € v(a). Finally, it follows from (iii) that ARy.I"
and hence that wp/Rv'. (See the picture above.)

To show the existence of the sets ¥/ and A, consider first the following set
o (the notation (m) stands for —[r]—):

{¢ |00 e BYU{(m)[Ugnly |y €'} (o)
We show that this set is consistent. For assume it is not. Then there must be

¢1 ...¢pn such that O,¢; € X for : < n and 1y ..., such that ¢»; € I fori < m
for which the following holds:

1. b, (MUY .. () [UfT]Ym F L. That means that

1 ... 00 F[m|H[UET|Y1 V.oV 7] [US7T] s, whence by axiom 5

1 ... On F[T[UZT] (1 A ... Athy,), so, using the necessitation rule,

Ogd1 ... Ogpp F Oy [7][Ufm]=(¥1 A ... Athy,), which means that

b [Um]Og—(1 A ... Athy,). But then

O,= (Y1 A ... Atdy) € T, and thus

=(1 A ... Apm) € T, in contradiction with the consistency of I and the
assumption that ¢; € T for all : < m.

So, since the set o is consistent, it has, by Lindenbaum’s lemma, a maximal
consistent extension X'. Take any such ¥', and consider the set J:

{o | [x]Y € By U{[Usn]y |4 € I} (9)
We show that § is consistent as well, by a similar argument. For if it is not,

there must be ¢y ... ¢, and ¢ ..., such that [7]¢; € L' for i < n and ¢; € TV
for each i < m such that:

1. b, [Ugm|thr ... [Ujmlhm F L, so, using axiom 5,

1 ... Pn F [UET] (Y1 A ... Athpy), and using necessitation
[7ls ... [ b [x][Ugm] (1 A - Ahm),

(7)o ... [7]n, (MUET] (Y1 Ao Apy) L.

This contradicts the fact that ¥’ is consistent, because, since 1); € I/ for each
i < m, it holds that ¢y A... A, € IV, and hence that (7)[Um](¢1 A. .. Ath) €
¥’ while [7]¢; € &' for each i < n.

So, the set § has a maximal consistent extension A, by Lindenbaum’s lemma.
By definition of A, properties (i), (ii) and (iii) hold, which completes the proof.
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