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Abstract: We propose a way in which Pothos and Busemeyer could strengthen their position.
Taking a dynamic stance we consider cognitive tests as functions that transfer a given input state into
the state after testing. Under very general conditions it can be shown that testable properties in
cognition form an orthomodular lattice. Gleason’s theorem then yields the conceptual necessity of
QP.

Pothos and Busemeyer (P&B) discuss quantum probabilities (QP) as providing an alternative to
classical probability (CP) for understanding cognition. In considerable detail, they point out several
phenomena CP cannot explain and they demonstrate how QP can account for these phenomena. An
obvious way to downplay this chain of arguments is by demonstrating that besides CP and QP
models, alternative approaches are possible that could also describe the phenomena without using
the strange and demanding instrument of QP. For instance, one could argue that the conjunction
puzzle can be resolved by simple heuristics (Gigerenzer, 1997), and the question ordering effects by
guery theory (Johnson, Haubl, & Keinan, 2007).

A general strategy to invalidate such criticism is to look for a universal motivation of QP which is
based on fundamental (architectural) properties of the area under investigation. As Kuhn (1996)
clarified, such basic assumptions constituting a theoretical paradigm normally cannot be justified
empirically. Basic assumptions which concern the general architecture of the theoretical system
(paradigm) are called design features. Using a term that is common in the generative linguistic
literature (Chomsky, 1995, 2005), we shall call properties that are consequences of such design
features as applying with (virtual) conceptual necessity.

We believe that P&B could further strengthen their argument by demonstrating that quantum
probabilities are such a (virtual) conceptual necessity. This can be achieved by adopting the recent
developments of “dynamification” in logic (van Benthem, 2011) and cognition (Barsalou, 2008)
where cognitive actions play a much more significant role than “static” propositions. Among others
(including Atmanspacher, Romer, & Walach, 2002), Baltag & Smets (2005) have given a complete
axiomatization for quantum action, based on the idea of a quantum transition systems. In this view,
the states of a system are identified with the actions that can be performed on the states. In physics,
the relevant actions are measurements. In cognitive psychology, actions correspond to tests that
subjects carry out (yes/no questions in the simplest case). Basically, a quantum dynamic frame is
characterized by a set of states X and a system T of subsets of X called testable properties. Each
testable property AeT is characterized by a unique (partial) transfer function P4 which describes how



testing of A changes an input state seX. The system of testable properties and the corresponding
transfer functions are characterized by some plausibility conditions. For instance, the testable
properties are closed under arbitrary intersection, states are testable, testing a true property does
not change the state (seA implies Pa(s)=s), repeatability (P,°= P,). Further, there are more technical
axioms such as self-adjointness and a covering law.

Restricting testable properties in this way, Baltag & Smets (2005) were able to prove (based on
earlier work by Piron 1976) that quantum dynamic frames are isomorphic to the lattice of the closed
subspaces of a Hilbert space (with transfer functions as projection operators). In the Baltag/Smets
approach, two states s and t are considered orthogonal if no measurement can transfer s into t.
Properties A and B are orthogonal if all states of A ore orthogonal to all states of B. If A and B are
orthogonal, the corresponding subspaces of the Hilbert space are orthogonal as well (and vice versa).
Mathematically, probabilities are totally additive measure functions — in the classical case based on
Boolean algebras and in the quantum case based on orthomodular lattices. The underlying algebra is
decisive for the properties of the resulting measure function. In the quantum case, Gleason's
theorem states that the corresponding measure functions can be expressed by the squared length of
the projections of a given state s (or more generally, as the convex hull of such functions; for details,
see the original paper Gleason (1957), and for a constructive proof see Richman & Bridges (1999)),
i.e., as QP.

Our view is further supported by P&B’s speculations about implications for brain neurophysiology. In
the algebraic approach, even classical dynamical systems such as neural networks, could exhibit
guantum-like properties in the case of coarse-graining measurements, when testing a property
cannot distinguish between epistemically equivalent states. Beim Graben & Atmanspacher (2009)
used this “epistemic quantization” for proving the possibility of incompatible properties in classical
dynamical systems. In neuroscience, most measurements, such as electroencephalography or
magnetic resonance imaging, are coarse-grainings in this sense. Thus, the Baltag/Smets approach has
direct implications for brain neurophysiology, without needing to refer to a “quantum brain” as
indicated by P&B.

Taken together, the Baltag/Smets approach provides an independent motivation of QP which is not
based on particular phenomena but rather on independently motivated general conditions
concerning the dynamics of testing. All the conditions needed for the proof are formulated in purely
dynamic terms. This makes quantum dynamic frames especially appealing for psychological
approaches formulating operational cognitive laws. Recent work by Busemeyer & Bruza (2012),
Trueblood & Busemeyer (2011), and Blutner (2012) is in this spirit. Since based on a dynamic picture
of propositions and questions and hence on the design principles of cognitive architecture, we state
that QP are a virtual conceptual necessity. Needless to say, that we regain CP (Kolmogorovian) by
assuming that no test is changing the state being tested.
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