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Abstract 

Metaphors involving motion and forces are a source of inspiration for understanding tonal music and tonal 
harmonies since ancient times. Starting with the rise of quantum cognition, the interactional conception of forces 
as developed in modern gauge theory has recently entered the field of theoretical musicology. We argue that the 
metaphoric conception of musical forces is unable to give a causal explanation of the essential mechanism of 
tonal dynamics. Rather, it describes correlation without explaining the mechanism that causes these correlations. 
The gauge-theoretic conception, in contrast follows a realistic foundation of physical and extra-physical forces. 
It identifies universal features that are necessary to the unique character and causal function of physical and 
extra-physical forces. In this article, we consider three gauge models of tonal attraction. The phase model 
borrows ideas from quantum electrodynamics. It is based on U(1) gauge symmetry. The spatial deformation 
model, in contrast, borrows its main idea from the general theory of relativity an can be seen being based on 
SO(2) gauge symmetry. In the neutral, force-free case both models agree and generate the same predictions as a 
simple qubit approach. However, there are several differences in the force-driven case. It is claimed that the 
deformation model gives a proper description of static tonal attraction (tonal hierarchies). The third model is a 
combination of the deformation model with the phase model. It is based on SU(2) gauge symmetry and yields a 
unifying approximation to dynamic attraction data (resolution of chords). 

1 Introduction 
The phenomenon of tonal attraction has fascinated researchers of music psychology, both 
empirically and theoretically (Krumhansl & Cuddy, 2010). There is a distinction between two 
types of tonal attraction, called static and dynamic attraction (Blutner, 2016; Parncutt, 2011). 
How well does a given pitch fit into a tonal scale or tonal key, being either a major or minor 
key? This is a question of the first type concerning the tonal centers.  A question of the 
second, dynamic type, typically asks for the level of resolution a subject feels when she hears 
a probe tone following a certain chord in a serial sequence.  

In an celebrated study by Krumhansl and Kessler (1982) the static type of tonal attraction 
was investigated. In this study, listeners were asked to rate how well each note of the 
chromatic octave fitted with a preceding context, which consisted of short musical sequences 
in major or minor keys. The results of this experiment clearly show a kind of hierarchy: the 
tonic pitch received the highest rating, followed by the pitches completing the tonic triad 
(third and fifth), followed by the remaining scale degrees, and finally followed by the 
chromatic, non-scale tones. This finding plays an essential role in Lerdahl's and Jackendoff's 
generative theory of tonal music (Lerdahl & Jackendoff, 1983). It clearly counts as one of the 
main pillars of the structural approach in music theory. A related approach of the static type is 
due to Bharucha (1996). The dynamic type of attraction was investigated by Krumhansl 
(1990, 1995),  Lake (1987), Bharucha (1996), Lerdahl (1996), Larson (2004),  Larson (2012), 
and in a recent study of Woolhouse (2009), following earlier research of Brown, Butler, and 
Jones (1994).  

Both types of tonal attraction have not only initiated an enormous number of empirical 
studies but also challenged a series of different models based on static and dynamic forces. 
Most of these models are close in inspiration to Larson (2012). All models explicitly or 
implicitly consider the term "musical forces" as a metaphoric term and build a 
phenomenological model on this basis. The models that exhibit the metaphorical trait aim at 
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describing correlation. They do not aim describing the causal  mechanism underlying tonal 
attraction.  

The work of Mazzola (1990, 2002) is an important exception to this widely shared 
methodology. His theory sees the whole conception of "musical force" as directly rooted in 
the basic symmetry principles of tonal music. To distinguish the phenomenological (and 
metaphoric) idea of forces from the idea based on fundamental symmetries and physical 
interaction, we will call the latter view the structural realistic view (or short: realist view). 
The idea is that the force conception plays a causal role in the theory. It is associated with a 
set of structural attributes that are necessary to the identity and function of physical and extra-
physical forces within an interactional, symmetry-based setting. 

The present paper is concerned with the realistic view, which explains the existence of 
musical forces in terms of gauge transformations. The gauge transformation used in a first 
step, is based on vector rotations in a two-dimensional (real) Hilbert space (founded on SO(2) 
symmetry). We call the corresponding model the spatial deformation model. It follows ideas 
that are borrowed from the general theory of relativity. Explicit applications to attraction 
phenomena were made recently (Blutner, 2016; beim Graben & Blutner, 2017). The gauge 
transformation used in the second step is based on local phase invariances in quantum theory 
(founded on U(1)). We call the corresponding model the phase model. Both gauge models use 
subgroups of the SU(2) symmetry group by transforming spinors. The combined model makes 
full use of this group. 

What we aim to demonstrate empirically is that the spatial deformation model gives a 
proper description of static tonal attraction (tonal hierarchies as described in generative music 
theory, e.g. Lehrdahl 1988). In contrast, the phase model alone does not give much empirical 
support. However, in tandem with the deformation model it gives a fair description of 
dynamic attraction data, as investigated by Woolhouse (2009). 

The structure of the paper is as follows. The subsequent Section 2 explains the metaphoric 
conception of musical forces and contrasts it with a realist conception. Section 3 will 
introduce the qubit model of tonal attraction. This model can be seen as a special case of the 
two realist models: it is explicating the force-free (neutral) case. Section 4 explains the 
general idea of the structural realist view and develops two local gauge theories, which 
subsequently are applied in music cognition. Both static and dynamic attraction phenomena 
are discussed. Further, we explain how the hierarchic model of tonal attraction (Lerdahl 1988, 
2001) can be remodelled within gauge theory and how we can extend this model in order to 
grasp certain asymmetries (major/minor modes). Section 5, finally, draws some general 
conclusions and rises several issues for future research.  

2 Metaphoric and realist conceptions of musical forces 
In classical physics, a force is seen as the cause of any change of the motion of an object.  A 
force has a magnitude and direction making it a vector. According to Newton's second law the 
force acting upon an object is equal to the rate at which its momentum (= mass times velocity 
of the object) changes with time. Notably, our intuitive understanding of physical forces is not 
exactly the same as Newton's physical understanding. This is especially visible in connection 
with Newton's first law. It states that physical objects continue to move in a state of constant 
velocity unless acted upon by an external force. This conflicts with our everyday experience 
assuming that objects move with constant velocity only when a constant force is applied (due 
to the hidden role of friction or turbulences).  Aristotle, to be sure, was much closer to folk 
physics than Galilei, who was the first devising experiments to disprove Aristotle's theory of 
movement.  

Within the last 100 years, the distance between theoretical physics and folk physics has 
increased even more. In modern particle physics, forces and the acceleration of particles are 
explained as a mathematical by-product of the exchange of momentum-carrying tiny particles 
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(so-called gauge bosons). With the development of quantum field theory and general 
relativity, it was realized that force is a redundant concept arising from conservation of 
momentum (4-momentum in relativity and momentum of virtual particles in quantum 
electrodynamics). The conservation of momentum can be directly derived from the 
homogeneity or symmetry of space and so is usually considered more fundamental than the 
concept of a force.  Hence, the modern understanding of physical forces sharply contrasts 
with our folk physical understanding,  which is sometimes taken as a sign of progress in 
science (Weinberg, 1992). 

Metaphors involving motion and forces are based on our folk physics and not on the 
modern understanding of physical forces. The former but not the latter are a source of 
inspiration for understanding tonal music and tonal harmonies since ancient times. The 
application of physical metaphors is quite common in theories of music. Physical forces are 
represented in our naïve (common sense) physics or folk physics. Our experience of musical 
motion is conceptualized in terms of our experience of physical motion and their underlying 
forces. For example, Schönberg speaks of different forces when he explains the direction of 
musical forces in cadences where the tonic attracts the dominant (Schönberg, 1911/1978, p. 
58).  

Whereas the metaphoric conception is based on analogical reasoning, the realistic 
conception assumes a principle-based structural mechanism and deductive reasoning. With 
the term "realism" we refer to a "group structural realism" (Dawid, 2017). The idea is to 
distinguish between token-based and type-based realism. In token-based realism (ontological 
realism), all entities that are postulated within the theory have a direct pendant in reality. In 
type-based realism, the theory as a whole is tested with reality. It is not required that all 
postulated entities acquire physical meaning. Perhaps, Johannes Kepler can be seen as a 
forerunner of the type based realism and the formulation of laws that can be tested only as a 
whole. Kepler also came with the idea – deeply rooted in his believe in God – that the 
harmonies of the world and the harmony of music could be described in a uniform way 
(Kepler, 1619). To be fair, we should add that some authors prefer to interpret Kepler's 
Harmonices Mundi (Kepler, 1619) and his "music of the spheres" in a different way and see 
Kepler as a forerunner of the metaphoric view (Hubbard, 2017).  

In modern physics, gauge theories have provided our best representations of the 
fundamental forces of nature, including electromagnetic forces, strong and weak nuclear 
forces. Even when this approach seems not to be reasonable and satisfying in all respects, it is 
a matter of fact that since more than 50 years local gauge symmetries play an essential role in 
constructing the most powerful and successful physical theories. A somewhat different 
mechanism is applied in Einstein's general theory of relativity for describing gravity. In this 
theory, the manifold space itself (time and space coordinates) is structured by a non-Euclidean 
metric. A basic assumption is that all coordinate systems (including those that are rotating and 
accelerated) are equivalent. The force of gravitation relates to a deformation of the manifold 
space.1 

2.1 Larson's metaphoric model of tonal forces 

Several authors explicitly or implicitly use the ideas of musical movements and musical 
forces as based on conceptual metaphors in the sense of Lakoff and Johnson (1980). That 
means the source domain of naïve (folk) physics is assumed to constitute a conceptual 
network establishing main propositions about physical movements and their causes ‒ the 
physical forces.  Analogical reasoning is used then to transfer the physical concepts to the 
                                                 
1 Several attempts were made to provide a gauge theoretic treatment for gravity. Famously, Weyl failed with his 
first attempt made in 1918 (Weyl, 1950). Later, others were more successful basing the gauge theory on the 
Lorentz group (1956) or the Poincare´ group (1961).  
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goal domain of tonal music.  In this way, it is possible to describe the most plausible 
expectations a listener generates during the processing of tonal music. This includes 
expectations based on static and dynamic forces. 

Larson (1997-98, 2004; 2012) is the most prominent author that develops this idea in 
detail. In particular, he proposed three musical forces that generate melodic completions. 
These forces are called ‘gravity’, ‘inertia’, and ‘magnetism’, respectively. These forces relate 
to conceptual metaphors (Lakoff and Johnson 1980) and structure our musical thinking per 
analogy with falling, inert and attracting physical bodies. Hence, physical forces are 
represented in our naïve (common sense) physics or folk physics. 

Larson (2012) gives some examples that concern ordinary discourses about music. They 
demonstrate the metaphorical potential of the three forces (‘gravity’, ‘inertia’, and 
‘magnetism’). GRAVITY: The soprano's high notes rang above. The rising melodic line 
climbed higher. MAGNETISM: The music is drawn to this stable note. The leading tone is 
pulled to the tonic. INERTIA: The accompanimental figure, once set in motion… . This dance 
rhythm generates such momentum that… (citations at the end of Sect. 8). 

In this subsection, we will present the basic ideas of Steve Larson as published in his last 
book (Larson 2012). We think that this book gives the best overview on the field of musical 
forces presently available. And it provides a fair discussion on related proposals such as 
Narmour's (1992) implication-realization model, the model of Bharucha (1996), Lerdahls 
(2001) algorithm, and related ideas of Margulis (2003) and others. 

Larson (2012) investigates the empirical hypothesis that the average rating of each of the 
investigated patterns is a function of the sum of musical forces acting on that pattern. To do 
so, a linear regression analysis is performed testing the following hypothesis for the "net 
force" F for a probe tone x as reflected by the ratings: 
 

(1)  F(x) = wG ⋅ G(x) + wM ⋅ M(x)  + wI ⋅ I(x) 
 
Hereby, wG , wM , and wI are the corresponding weight factors of the three constraint functions. 
The constraint functions themselves reflect the intuitive content of the phenomenological 
forces. For instance, the constraint G(x) for gravity gets the value 1 (0) if the probe tone x is 
lower (higher) than the preceding tone. Hence, the constraint for gravity prefers falling tones 
to rising ones. The results of the linear regression analysis for the investigated data (Larson & 
van Handel, 2005) are wG = 0.4, wM = 0.1, wI = 1.2. The correlation between model and data is 
r = 0.95. This high r-value means that the three forces, taken together, can account for about 
90% of the variance of the frequency data. The two weight factors for gravity and magnetism 
are each significantly different from zero (at a 0.1 % level), but the weight for inertia is not. 
Interestingly, other studies using other data sets (Larson, 2002) give a different result: gravity 
and inertia both make significant contributions but magnetism does not. In the 2005 study an 
additional analysis was performed that included in addition to GRAVITY, MAGNETISM, and 
INERTIA, an extra factor signaling the ending on tonic (= 1̂) was introduced. In this case the 
correlation is still a bit higher: r = 0.977, and the extra factor got a weight of 0.46. 
Interestingly, the other factors now get weights different from the former analysis: wG = 0.16 
(instead of 0.4), wM = 0.26 (instead of 0.1), and wI = 1.2 (as before). Hence, magnetism and 
inertia both make significant contributions to linear regression but gravity does not. This 
demonstrated that the contribution of single factors to the "net force" can be evaluated only 
when the full context of all involved factors is given.  

Finally, we want to stress that even a high correlation value of the fit as found in the data 
analysis just described does not answer the fundamental question about constraint grounding. 
As we have seen, the addition of some extra factors can radically change the influence of 
other factors and can even marginalize some factors. Hence, a multiple regression analysis 
with a high overall correlation coefficient cannot be taken as argument that the involved 
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factors are all substantiated and "symbolically grounded" in the sense of Harnad (1990). As 
such, we cannot expect that these factors play a causal role in explaining tonal attraction.  

We think Larson (2012) was aware of these problems. Several of his careful analyses try to 
justify the special role of musical forces. This contrast with alternative analyses by earlier 
authors. Further, Larson (2012) has investigated different variants of various factors 
(constraints) and he found how sensitive the cognitive system reacts even on minimal 
variations.  

2.2 The realistic conception of tonal forces 

What we will call "realistic conception" in this article is due to ideas borrowed from theoret-
ical physics. According to Penrose (2004), all physical interactions are governed by "gauge 
connections" which depend crucially on spaces having exact symmetries (p. 289). It are these 
gauge connections which we will take as the basic of the present realistic conception of tonal 
forces. From the perspective of quantum physics, the idea of gauge symmetry has been 
applied by pioneers such as Schrödinger, Klein, Fock and others (for an overview, see 
Jackson & Okun, 2001).2 It is suitable to introduce the realist force conception by means of a 
simplified mechanical picture (following Harlander, 2013). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Left: Global Gauge. Right: Local gauge  
 

Figure 1 gives a mechanical example of a so-called gauge symmetry provided by a tire 
rolling on a pane of glass. The shining sun is producing a moving shadow, which is the 
essential thing we can observe (similarly to Plato's allegory of the cave). For the movement of 
the shadow the absolute altitude of the pane is not relevant, only the velocity of the rolling tire 

                                                 
2 As an example, the description of electrons as formulated by the Dirac equation can be considered. In this case, 
the multiplication of the wave function with a local phase factor eiϕ(x,t)  introduces an additional term in the 
transformed Dirac equations which destroys the symmetry. The crucial idea is to compensate the destroying term 
by an additional term modifying the original electromagnetic potential. This term is seen as describing an 
interaction of the original electromagnetic field with a gauge field. Obviously, this idea realizes a new dynamical 
principle coupling the gauge field with the electromagnetic field of the electron. There is a natural interpretation 
of the gauge field: it describes the interaction of a photon with the electron. In other words, the exchange of a 
photon is realizing a new force found by the idea of a gauge transformation. A more complex case is the standard 
model of particle physics. The model is formulated as a non-Abelian gauge theory with the symmetry group 
U(1)×SU(2)×SU(3). It has twelve gauge bosons: the photon, three weak bosons and eight gluons. Between 
quantum electrodynamics and the full complexity of particle physics, there are symmetry groups such as SU(2) 
which correspond to the Schrödinger-Pauli equation and U(1)×SU(2) for the Schrödinger-Pauli equation includ-
ing a Higgs field to give spin-1/2 dyons their masses. 
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is. The fact that the whole scenery of the rolling tire can be moved vertically without changing 
the movement of the shadow corresponds to a global symmetry.  

Now assume that there is a deformation of the pane resulting in a local change of the 
altitude of the tire. The variation of attitude is producing a breaking of the global symmetry. 
The dynamic effect of the symmetry breaking is that the velocity of the tire is changing by 
means of the deformation. The shadow at the bottom reflects this behaviour.  

The request for local symmetry is now simple to understand. It refers to the demand that 
the movement of the shadow does not give any indication for the deformation of the pane of 
glass. Obviously, this can happen if we slow down or accelerate the tire dependent on the 
local deformation. In other words, the request of local symmetry demands us to introduce a 
varying force.3  

Generally, the idea of founding forces by symmetries is as follows. Assume a physical 
system is invariant with respect to some global group of continuous transformations (for 
instance, independence of space and time). Then the idea of gauge invariance, is to make the 
stronger assumption that the basic physical equations describing the system have to be 
invariant when the group operations are considered locally (i.e., dependent on time and the 
other coordinates of the system). Normally, this principle of gauge invariance, leads to a 
modification of the original equation and introduces additional terms which can be interpreted 
as new "forces" induced by the "gauge field", which describes these local dependencies.4  

2.3 The hierarchic model of tonal attraction 

Lerdahl (1988, 2001) has developed a model of tonal attraction based on a tonal hierarchy. 
Forerunners of this approach are Krumhansl (1979), Krumhansl and Kessler (1982) and 
Deutsch and Feroe (1981). A numerical representation of Lerdahl’s basic space for C-major is 
given in Table 1. It shows the twelve tones at their levels in the tonal hierarchy. In all, five 
levels are considered:  
 
A: octave space (defined by the root tone, C in the present case) 
B: open fifth space 
C: triadic space 
D: diatonic space (including all diatonic pitches of C-major in the present case)  
E: chromatic space (including all twelve pitch classes). 
  
Table 1 also shows the tonal attraction or anchoring strength s. This measure simply counts 
the number of degrees that are commonly shared across levels A to D (omitting level E that is 
common for all tones). 
 

                                                 
3 Of course, pictures such as Figure 1 should be used with great caution. Moses forbid the Israelites to make any 
image of God. Similarly, in several respects, Dirac remarked that we should not try to make visualizations of 
quantum theory.  
4 As mentioned already, the idea of gauge invariance was first developed by Hermann Weyl in 1918, when he 
made the attempt to unify gravity and electromagnetism. Weyl assumed that the length of any single vector is 
arbitrary. Only the relative lengths of any two vectors and the angle between them are preserved under parallel 
transport. This was the birth of a new idea in physics which was called "gauge invariance" by Weyl. Even when 
Weyl's attempt to develop a unified theory failed, the idea survived and was extremely successful later on. It is 
this success that justifies the theory. The theory itself remains mysterious to a certain degree: we do not have an 
independent, physical or methodological motivation for it.  
 



 7 

A:octave 
B: fifth 
C: triadic 
D: diatonic 
E: chromatic 

C 
C 
C 
C 
C♭ 

x 
x 
x 
x 
D♭ 

x 
x 
x 
D 
D♭ 

x 
x 
x 
x 
E♭ 

x 
x 
E 
E 
E♭ 

x 
x 
x 
F 
F♭ 

x 
x 
x 
x 
G♭ 

x 
G 
G 
G 
G♭ 

x 
x 
x 
x 
A♭ 

x 
x 
x 
A 
A♭ 

x 
x 
x 
x 
B♭ 

x 
x 
x 
B 
B♭ 

Anchoring strength s 0 4 3 4 2 3 4 1 4 3 4 3 
 
Table 1:  The basic tonal pitch space as given in Lerdahl (1988).  
 
Temperley (2008) proposes the following formula to calculate the attraction probability: 
 
(2)  𝑝𝑝(𝑗𝑗) =  𝑠𝑠(𝑗𝑗)

∑ 𝑠𝑠(𝑗𝑗)𝑗𝑗
 

 
The predictions of the hierarchical model are in excellent agreement with the experimental 
data in the case of major keys. In case of minor keys (based on the natural or harmonic minor 
scale), however, there are significant deviations (Blutner, 2015; beim Graben & Blutner, 
2019).  

The basic tonal pitch space is easy to model within the framework of optimality theory 
(Prince & Smolensky, 1993/2004; Smolensky & Legendre, 2006). In this framework, the 
tonal levels have to be interpreted by tonal constraints. The constraints simply express 
whether a given tone is a member of the considered tonal level. For example, the constraint A 
(related to the octave level) is satisfied if the considered tone is the root tone and it is violated 
otherwise.  In Table 1, a constraint violation is marked by "x". Obviously, the number of 
violations agrees with the anchoring strength if all constraints are considered equally ranked.  

Regarding the function of the tonic hierarchy in tonal music, we refer to the insights of 
Philip Ball, which crucially addresses the tonal dynamics: 
 

Although it is normally applied only to Western music, the word 'tonal' is appropriate for any 
music that recognizes a hierarchy that privileges notes to different degrees. That's true of the music 
of most cultures. In Indian music, the Sa note of a that scale functions as a tonic. It's not really 
known whether the modes of ancient Greece were really scales with a tonic centre, but it seems 
likely that each mode had at least a 'special' note the mese, that, by occurring most often in 
melodies, functioned perceptually as a tonic. This differentiation of notes is a cognitive crutch: it 
helps us interpret and remember a tune.  The notes higher in a hierarchy offer landmarks that 
anchor the melody, so that we don't just hear it as a string of so many equivalent notes. Music 
theorists say that notes higher in this hierarchy are more stable, by which they mean that they seem 
less likely to move off somewhere else. Because it is the most stable of all, the tonic is where 
melodies come to rest. (Ball 2010: 95) 

 
As we have seen, the probe tone techniques used in the experiments by Krumhansl, Kessler 
and others ask listeners directly to judge how well a single probe tone or chord fits an 
established context, and the relevant data collected by this technique represent the static site 
of tonal attraction. However, the finding that some tones are more stable than others invites 
some speculation about the dynamics of attraction. When considering sequences of pitches, "a 
melody is then like a stream of water that seeks the low ground" (Ball 2010: 95). The dynamic 
forces stipulated by Ball (2010) are forces that are directed towards the chromatically closest 
tones that are higher in the static attraction hierarchy than the trigger. In a related article 
(Blutner, 2019) this idea is discussed in more detail.  For the present purposes, it is enough to 
accept that dynamic attraction phenomena cannot be understood without their static 
counterparts. 
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Importantly, at the present state of discussion we have neither a precise mathematical 
conception of stability nor a realistic idea of musical forces. The metaphoric view of musical 
forces suggest to take certain pattern of tonal continuation as expression of musical forces. 
These forces are assumed to determine the dynamics of tonal sequences.5 This view is based 
on rather simple-minded ideas about the phenomenology of musical forces. In Sect. 2.1, we 
have outlined that the underlying multi-regression analysis cannot be taken as a causal 
explanation of the essential mechanism of tonal dynamics. Rather, it describes correlation 
without explaining the mechanism that causes these correlations.  

In Section 4, we present a causal mechanism for explaining the phenomena of static and 
dynamic attraction. It is based on a realistic view of musical forces and it exploits two basic 
views how such forces can arise: (i) forces may emerge by a local gauge deforming the 
manifold space (deformation model); (ii) forces may emerge by a local gauge transforming 
the phases of the wave function (phase model). The deformation model accounts for the static 
attraction data. For explaining the dynamic attraction data, we will apply deformation model 
and phase model in tandem. This ensures that the dynamic attraction phenomena are based on 
a static attraction mechanism that is lifted to a dynamic level (by applying the phase model in 
the second step).  

Remarkably, the realistic view of musical forces does not only give a precise definition of 
musical forces. It also provides a precise notion of stability, based on the ingenious work of 
the Russian mathematician Alexander Michailowitsch Lyapunov (Lyapunov, 1966). Before 
we introduce the realistic models, it is opportune to explain how basic ideas of quantum 
cognition can be applied to computational music theory. 

3 The qubit model of tonal attraction 
For the following, we make use of the notion of a tonal pitch system.  A tonal pitch system 
consists of a number of pitches where pitches are sounds defined by a certain fundamental 
frequency. In this paper, we assume octave-equivalence resulting in twelve pitch classes, also 
called tones. Further, we assume a tuning system based on an equal temperament, i.e. a tuning 
system in which the fundamental frequencies between adjacent notes have the same ratio. 
The following numeric notation is used for defining the twelve tones of the system ("scale 
degrees" j, with j running from 0 to 11), in ascending order:  
 
(3)  0 = C, 1 = D♭, 2 = D, 3 = E♭, 4 = E, 5 = F, 6 = G♭, 7 = G, 8 = A♭, 9 = A, 10 = B♭, 11 = B 
 
For applying basic ideas of group theory it is essential that there are certain operations that 
allow transforming tones into other tones. For instance, we can increase the tones by a certain 
number of steps (0, 1, 2, …, 11). Such operations are called transpositions. The 1-step 
transposition transforms C into D♭, D♭ into D, and so on. Operations can be combined. For 
example, we can combine the transposition of a 2-step increase with a 3-step transposition, 
resulting in a 5-step transposition (in other words, a major second combined with a minor 
third gives a fifth). We will denote these operations likewise with the numbers 0, 1, 2, …, 11. 
Normally, the context makes clear what the numbers denote: a pitch class or the operation of 
increasing tones by a number of elementary steps. It is obvious that the combination of 
operations of transpositions can be described by addition (modulo 12): x + y mod 12; e.g., 
2+3 mod 12 = 5, 7+6 mod 12 = 1. For a concise introduction of basic concepts of the 
mathematical theory of groups, the reader is referred to standard text books (e.g., Alexandroff, 
2012).  
                                                 
5 See Sect. 2.1, especially Formula (1). The regression analysis performed by (1) conforms to the dynamics of 
tonal music. This contrasts with the regression analysis based on the constraints A-D of the tonal pitch space, 
which clearly corresponds to the phenomenon of static attraction. 
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In the case of music based on twelve tones, we have to consider the set of group elements 
{0, 1, 2, …, 11}, and the group operation is x ⋅ y = x + y mod 12. The neutral element is the 
element denoted by 0: (0 + x) mod 12 = (x + 0) mod 12 = x. For the inverse element x−1, we 
have x−1 = (12 − x) mod 12. The group consisting of the 12 tones is a cyclic group, which is 
called ℤ12. Note that a group G is called cyclic if there exists a single element g ∈ G such that 
every element in G can be represented as a composition of g's. The element g is called a 
generator of the group.  

In the present numerical representation of the cyclic group ℤ12 we have four generators 
conforming to the numbers 1, 11, 7, 5. Hence, 1 (upward) and 11 (downward) generate the 
sequence of semitones.  In addition, the elements 5 and 7 enumerate the group elements in 
successive fifths or fourths − representing the circle of fifths. Figure 2 gives a visual 
representation of the group ℤ12 using the two basically different generators 1 or 11 (left hand 
side, 7 or 5 (right hand side).  

Next, we have to look for a simple geometric representation of this symmetry group. This 
group could consist of linear maps as studied in linear algebra. More specifically, the group 
could consist of certain rotations of vectors in a two-dimensional vector space. For instance 
we can rotate the vector ψ→ = (1

0) in 12 steps to the original vector. In linear algebra, the 
elementary rotation steps can be described by a rotation matrix that is rotating the state 
vectors by an angle of π/12.6 In the Bloch sphere the rotation angle has to be doubled, i.e. π/6 
for one rotation step. This is represented on the right hand side of Figure 2 using the generator 
of the circle of fifth. In contrast, the left hand side shows the 12 tones arranged in a chromatic 
way. In both parts of Fig. 2, the tones of the diatonic (C major) scale are shown by white 
circles and the other tones (called the non-diatonic ones) are represented by black circles. 
Obviously, the 7 diatonic tones as well as the 5 non-diatonic ones are connected (= convex) 
areas when the circle of fifth is used but they are not connected when the chromatic ordering 
is applied. It is this fact that favours the circle of fifth representation over the chromatic 
representation. The former can be seen cognitively more realistic than the latter (following 
Gärdenfors' (2000) methodology of conceptual spaces). 

                                                 
6 Obviously, an explicit representation of the vectors representing the 12 tones in the 2-dimensional Hilbert space 

is as follows:   𝜓𝜓𝑗𝑗 =  (cos (𝑗𝑗𝑗𝑗 12⁄ )
sin (𝑗𝑗𝑗𝑗 12⁄ )) with j = 0, …, 11. For j = 0, we get the tonic vector (1

0) and for j = 6 we get 

the orthogonal vector (0
1)  representing the triton. 
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Figure 2: Visual representation of ℤ12. On the left hand side the different elements of the group are 
generated by the semi-tone generator. The white dots give an ordered subset of ℤ12 starting with the 
tone 0. It is the diatonic scale of C-major. On the right hand side, the group elements are generated by 
a generator that transposes by seven semi-tones (resulting in the circle of fifth). The numbers indicate 
how often the generator is applied recursively. The tones in the inner circles are the results of application 
of the corresponding group element to the basic pitch class C.  
 
There is a straightforward argument for the uniform distribution of the 12 tones in the Bloch 
circle. It is due to a fundamental symmetry principle. Mathematically, symmetry is simply a 
set of transformations applied to given structural states such that the transformations preserve 
the properties of the states. In music, the most basic symmetry principle is the principle of 
transposition invariance. It says that the musical quality of a musical episode is essentially 
unchanged if it is transposed into a different key, i.e. if the operations of the cyclic group ℤ12 
are applied. Therefore, we can say that ℤ12 is the symmetry group of (Western) music 
assuming equal temperament.  

In the following subsection, we will explain how this vector representation of the twelve 
tones makes it possible to derive precise attraction values (in terms of quantum probabilities). 

3.1 The neutral case  

In the case of pure states, quantum theory defines structural probabilities (cf. Blutner 2015). 
This means the probability that a state ψ collapses into another state depends exclusively on 
the geometric, structural properties of the considered states.  How well does a given tone fit 
with the tonic pitch of a given tonal context? What is the probability that it collapses into the 
(tonic) comparison state? The probability  𝑃𝑃𝑙𝑙(𝑗𝑗) of a collapse of the state ψj into a state ψl 
(rather than in an orthogonal state) can be calculated straightforwardly. It is the square of the 
length of the projection of state ψj onto state ψl : 
 
(4)      𝑃𝑃𝑙𝑙(𝑗𝑗) = cos2 (𝑗𝑗(𝑗𝑗 − 𝑙𝑙) 12⁄ ) = ½(1 + cos (𝑗𝑗(𝑗𝑗 − 𝑙𝑙) 6⁄ )), where 0 ≤ j, 𝑙𝑙 ≤ 11. 
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For a fixed element ψ𝑙𝑙 equation (4) calculates a measure of how well each of the twelve target 
tones indexed by j (0 ≤ k ≤ 11) fits to the contextually given comparison tone. Hence, formula 
(4) offers the attraction profile relative to a contextually given cue tone ψ𝑙𝑙. In the following 
we will set l = 0. This allows a simple calculation of the quantum-probabilistic profile 
assuming a variable k referring to intervals instead of a single tones (the intervals spanned by 
the contextually cue tone and the target tones): 
 
(5)   𝑃𝑃(𝑘𝑘) = cos2 (𝑗𝑗 𝑘𝑘 12⁄ ) = ½(1 + cos (𝑗𝑗 𝑘𝑘 6⁄ )), where 0 ≤ k ≤ 11. 
 
We can compare it with the attraction profile resulting from interval cycles (Woolhouse, 
2009, 2010; Woolhouse & Cross, 2010), as presented in Fig. 4.  
 

                                   
  
Figure 3: Comparison between the profiles (kernel functions) resulting from interval cycles (dashed) and 
the profile resulting from a simple quantum model (neutral kernel function; bold curve). Note that the 
endpoints corresponds to the tonic tone (0 ≅ 12). Due to the chosen normalization, the maximum of the 
profiles is 1 in each case. On the right hand side the comparison with the phase-shifted curve is shown 
(phase shift by 𝑗𝑗). 
 
The figure illustrates that the kernel resulting from interval cycles7 and the kernel resulting 
from the simple quantum model are very different. In both cases shown in Figure 3, the 
correlation between the ICP is close to zero (- 0.1 for the kernel shown on the left hand side 
and + 0.1 for the kernel shown on the right hand side). This rises a series empirical problem 
since the ICP model gives a good fit for the dynamic attraction data (Woolhouse, 2009). 

3.2 The role of phase parameters  

When the simple Bloch circle (real 2-dimensional Hilbert space) is replaced by the full 
Bloch-sphere (complex 2-dimensional Hilbert space), the phase parameters come into play as 
shown in the following formula: 
 
(6) 𝑃𝑃(𝑘𝑘) =  1

2
(1 + cos(∆𝑘𝑘) cos (𝑗𝑗 (𝑘𝑘 − 3) 6⁄ ).8 

                                                 
7 The basic idea is that the attraction between two pitches is proportional to the number of times the interval 
spanned by the two pitches must be multiplied by itself to produce some whole number of octaves. Assuming 
twelve-tone equal temperament, the interval-cycle proximity (ICP) of the interval can be defined as the smallest 
positive number ICP such that the product with the interval length (i.e. the number of half tone steps spanned by 
the interval) is a multiple of 12 (maximal interval length). For example, the ICP for the triton is 2 and the ICP 
for the fifth is 12. 
8 Taking a phase parameter into account, the 12 tones can be represented by the following vectors in the full 

qubit space:   𝜓𝜓𝑗𝑗 =  (
cos (𝑗𝑗𝑗𝑗 12⁄ )

sin(𝑗𝑗𝑗𝑗 12⁄ )𝑒𝑒𝑖𝑖 Δ𝑗𝑗
) with j = 0, …, 11. In case we chose  j=0 for the tonic, the calculated 

projections are identical with the neutral case and do not depend on the phase parameters of the tones. The same 
holds for the calculated probabilities. Therefore, we take the vector 1

√2
(1

1) for representing the tonic. Then it is 
easy to see that formula (6) results for the probability distribution (attraction potential). 
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For k= 3, the probability gets its maximum (𝑃𝑃(3) = 1) if we assume a zero phase shift. In an earlier 
study (Blutner, 2015) all the phase parameters were fitted by the data of Krumhansl and Kessler (1982). 
However, it can be criticised that this procedure is not very explanatory because of the big number of 
parameters that have to be fitted. Further, the status of these parameters as entities that have to be learned 
is questionable. A more systematic solution is provided in Sect. 4.3 and 4.4 where a gauge-theoretic 
variant of this model is developed, the phase model.   

3.3 Attraction profile = kernel + linear convolution  

Formula (5) for the neutral case or formula (6) for the complex case with phases are not 
enough to represent the psychological attraction data as measured by Krumhansl and Kessler 
(1982) and by others. The point is that these formulas refer to a single contextual element 
only. In other words, these formulas represent kernel functions only. These kernel functions 
enter a procedure that takes several contextual elements into account (for example, the three 
tones of a chord or the seven tones of a standard cadence / diatonic scale). The idea we apply 
here is to handle this procedure by a linear convolution process as represented by the 
following formula: 
 
(7) 𝑃𝑃(𝑗𝑗) = ∑ 𝑘𝑘𝑒𝑒𝑘𝑘𝑘𝑘𝑒𝑒𝑙𝑙(𝑗𝑗 − 𝑙𝑙) ∙ 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙)𝑙𝑙  
 
One can regard this formula as an equation that describes the modification of a kernel 
function by a distribution of several contextual elements 𝑙𝑙 𝜖𝜖 𝑐𝑐𝑐𝑐𝑘𝑘𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐. For example, the kernel 
function can be the ICP kernel or the function 𝑃𝑃(𝑘𝑘) taken from expression (5) – describing 
the neutral case of the qubit model. Since the kernel function in (7) depends on the difference 
𝑗𝑗 − 𝑙𝑙 only, it automatically satisfies the requirement of transposition invariance. 

An important theoretical question is where the distributions 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙) comes from. The 
general answer is that it comes from a probabilistic, Bayesian induction, which is based on the 
frequency of tones realized in a given piece of music. In the simplest case, it is appropriate to 
take the three tones of a tonic chord – assuming that these three tones realize the context, each 
of them having probability 1/3. Another possibility is to induce the underlying diatonic scale 
and to assume that the seven elements of this scale have equal probabilities.  

It should be mentioned that Matthew Woolhouse and colleagues were possibly the first 
who used this methodology for describing attraction potentials (Woolhouse, 2009, 2010; 
Woolhouse & Cross, 2010) (see also Blutner, 2015). Interestingly, a similar method has been 
used in computational linguistics for modelling adjectival modification (de Groot, 2013). 

4 The realist view of musical forces and three gauge models of 
tonal attraction 
So far, we have considered tones as isolated entities, which are represented by vectors of a 
two-dimensional Hilbert space. From the point of view of information processing in the 
cochlea and the anatomy of the auditory brain this is not a very plausible assumption. Already 
the idea of frequency separation on the basilar membrane suggest a field model of tonal 
perception, which is closely related to the "place theory" of acoustic processing. The basic 
idea is the existence of a (one-dimensional) manifold space and the assumption that the 
different tones relate to discrete parts of this space.  

We know that all changes of the quantum state by a unitary transformation leave all 
observable physical effects unchanged. A unitary transformation does not change the scalar 
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product ψ1 ∙ ψ2 of two vectors of a Hilbert space. The following matrix describes the general 
form of a unitary transformation in a two-dimensional spinor-space (conforming to the group 
SU(2)): 

 
(8) 𝐸𝐸(𝜃𝜃,𝛿𝛿, 𝜏𝜏) = (𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑒𝑒−𝑖𝑖𝑖𝑖 −𝑐𝑐𝑠𝑠𝑘𝑘 𝜃𝜃𝑒𝑒𝑖𝑖𝑖𝑖

𝑐𝑐𝑠𝑠𝑘𝑘 𝜃𝜃𝑒𝑒−𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑒𝑒𝑖𝑖𝑖𝑖
) 

 
Hereby, 𝜃𝜃, 𝛿𝛿, 𝜏𝜏 are real-valued parameters that determine the transformation. In a field model, 
these parameters can be independent of the variables that determine the manifold space (i.e. x 
in the present case) or they can be dependent of these variables (written 𝜃𝜃(𝑐𝑐), 𝛿𝛿(𝑐𝑐), 𝜏𝜏(𝑐𝑐). In 
the first case, the transformation is as follows: 
 
(9) ψ(𝑐𝑐)  ⟶  ψ̃(𝑐𝑐) = [𝐸𝐸(𝜃𝜃,𝛿𝛿, 𝜏𝜏)]ψ(𝑐𝑐)  
 
It is called global gauge transformation. In the second case, the transformation is dependent 
of the manifold space: 
 
(10) ψ(𝑐𝑐)  ⟶  ψ̃(𝑐𝑐) = [𝐸𝐸(𝜃𝜃(𝑐𝑐), 𝛿𝛿(𝑐𝑐), 𝜏𝜏(𝑐𝑐))]ψ(𝑐𝑐)  
 
It is called local gauge transformation. The invariance of certain equations under global 
transformations is called global gauge symmetry and the invariance under local transformat-
ions is called local gauge symmetry. The idea behind local gauge transformation is the 
requirement that this transformation leads to a neutral (force-free) solution of the underlying 
dynamics. That means the gauge transformation eliminates the forces that control the initial 
wave function ψ(𝑐𝑐), just as in the mechanical example of Sect. 2.2. 

Here are two important examples of gauge transformations. First, we consider real-valued 
vectors and two-dimensional rotation matrices with the rotation parameter 𝜃𝜃.  
 
(11) 𝐸𝐸(𝜃𝜃, 0, 0) = (𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 −𝑐𝑐𝑠𝑠𝑘𝑘 𝜃𝜃

𝑐𝑐𝑠𝑠𝑘𝑘 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 )  

 
This relates to the symmetry group SO(2). In the following subsection we will see that a local 
variant of this gauge transformation provides the deformation model of tonal attraction – a 
model of static attraction. The advantage of a gauge model of tonal music is that it gives a 
mathematical derivation of particular musical forces. 
 Our second example of a gauge transformation is a shift of the phases of the wave function 
that is illustrated here: 
  
(12) 𝐸𝐸(0,𝛿𝛿, 0) = (𝑒𝑒

−𝑖𝑖𝑖𝑖 0
0  𝑒𝑒𝑖𝑖𝑖𝑖

) 

 
The parameter 𝛿𝛿 is a phase parameter that is assumed being independent of x in the global 
variant. The local variant of this gauge transformation assumes local dependencies 𝛿𝛿(𝑐𝑐) and 
provides a model of tonal attraction, which is called the phase model. At the moment we let it 
open whether this model is intended to describe static or dynamic attraction.9 Later we will 
see that the deformation model best applies to static attraction. A combination of deformation 
and phase model describes dynamic attraction phenomena – the combined model is the third 
gauge model that we will discuss. 

There is another subgroup of SU(2) described by the matrix  
                                                 
9 In an earlier approach, both the deformation model and the phase model were applied to both static and 
dynamic attraction phenomena (Blutner, 2019). 
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(13) 𝐸𝐸(0,0, 𝜏𝜏) = ( 0 𝑒𝑒𝑖𝑖𝑖𝑖

𝑒𝑒−𝑖𝑖𝑖𝑖  0
) .  

 
The transformation triggered by this matrix is similar to those described by the matrix in (12). 
The sum of the two matrices manipulating the phases is given in (14)  
 
(14) 𝐸𝐸(0,𝛿𝛿, 𝜏𝜏) = (𝑒𝑒

−𝑖𝑖𝑖𝑖 𝑒𝑒𝑖𝑖𝑖𝑖
𝑒𝑒−𝑖𝑖𝑖𝑖   𝑒𝑒𝑖𝑖𝑖𝑖

) .  

 
The full SU(2) transformation matrix 𝐸𝐸(𝜃𝜃, 𝛿𝛿, 𝜏𝜏) as defined by formula (8) is the sum of the 
two matrices 𝐸𝐸(𝜃𝜃, 0, 0) and 𝐸𝐸(0, 𝛿𝛿, 𝜏𝜏). Using our own  terminology, we refer to the first 
matrix (11) and the corresponding gauge field by ‘deformation field’ and to the second matrix 
(14) by ‘phase field’.10 

Obviously, in our simple mechanical picture (see Sect. 2.2), the global altitude of the plate 
corresponds to the global rotation parameter (in the deformation model) or the global phase 
parameter (in the phase model). In contrast, the locally changing value of the rotation 
parameter or of the phase parameter is relevant for the demand of local gauge symmetries. 
This demand is the structural instrument that introduces physical (and musical) forces. The 
fundamental equations satisfy global gauge invariance. The request for local gauge invariance 
can be satisfied only by introducing additional terms into the basic dynamic equations, which 
correspond to physical forces. In other words, we have to consider local phase changes always 
in tandem with emerging forces in the dynamic equations. 

There are three main aspects that distinguish the gauge theoretic approaches of tonal 
attraction from the qubit model of the previous section. First, the qubit model considers tonal 
states as isolated vectors of a two dimensional vector space (qubit states). It corresponds to 
the force-free case. In contrast, the gauge theoretic approach analyses tonal states as resulting 
from a Schrödinger wave function (with its temporal and spatial dimensions). In the simplest 
case, the wave function is a standing wave along a one-dimensional spatial continuum 0 ≤ x ≤ 
2π, and the different tones relate to different discrete parts of the manifold space. 

Second, the precise shape of the standing wave is determined either by particular local 
phase shifts (phase model) or by rotations of the vectors dependent of the spatial component 
(spatial deformation model). In both cases, the twelve tones are described by oscillations of 
the spin wave at particular points on the spatial axis.  

Third, the origin of tonal micro-forces differs for the two models. In case of the phase 
model it arises from local phase shifts that are described by a parametrized phase function 
δ(x). In case of the deformation model it arises from a local rotation function 𝜃𝜃(x) that rotes 
the spin vectors locally dependent of the spatial x-values. This rotation transformation of the 
spatial component can be interpreted as a nonlinear transformation of the manifold space and 
leads to a force conception similar to the idea of the force of gravitation in Einstein's general 
theory of relativity.11 

Before we come to the detailed treatment of the two gauge models, we should give a 
concise introduction into the dynamic aspects of quantum theory. First, we consider the 
stationary form of the Schrödinger equation for describing objects in (one-dimensional) space 
and time (Schrödinger, 1926): 

                                                 
10 Using the terminology  of weak interaction physic (see Appendix 5), we refer to the (12) and the 
corresponding gauge theory by ‘neutral current’. The other matrices relate in an indirect and less obvious way to 
the two variants of the ‘charged current’. 
11 It goes without debating that the gauge model is not a modelling of the travelling wave in the cochlea 
(Terhardt, 1972, 1998). Rather, it could be seen as a third generation neural network approach approaching brain 
waves in the auditory cortex (Coombes, beim Graben, Potthast, & Wright, 2014). 
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(15)    − 𝜕𝜕2ψ(𝑐𝑐)

𝜕𝜕𝑐𝑐2
= 𝐸𝐸 ψ(𝑐𝑐) 

 
A solution of this equation under appropriate boundary conditions is the following standing 
wave: 

 
(16) ψ(𝑐𝑐) = cos(√𝐸𝐸  ∙ 𝑐𝑐) 12 
 
For 𝐸𝐸 = 1/4 this function is cos(𝑐𝑐/2). It relates to a standing wave along the x-axis with 
amplitude's maxima at x = 0 and x = 2π and a zero amplitude at x = π. Using standard wisdom 
of quantum mechanics, the probability density for each point of the manifold space is defined 
by the following expression: 
 
(17) |ψ(𝑐𝑐)|2 = cos2 (𝑐𝑐

2
) = 1/2(1 + cos (𝑐𝑐)). 

 
For describing tonal music with 12 tones we need a discretization of the manifold space which 
we can achieve through sampling 𝑐𝑐𝑘𝑘 = 𝜋𝜋𝑘𝑘

6
, for k ∈ {0, 1, …, 11}. The corresponding 

distribution is then as follows: 
 
(18)    𝑝𝑝𝑘𝑘 = cos2 (𝜋𝜋𝑘𝑘

12
) = 1/2(1 + 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋𝑘𝑘

6
)) 

 
This formula exactly corresponds to the neutral case of the qubit model described by equation 
(5).  

The Schrödinger approach can be straightforwardly extended to the two-dimensional case 

of objects with spin ψ(𝑐𝑐) = (ψ+(𝑐𝑐)
ψ−(𝑐𝑐)) assuming that the magnetic vector potential does not 

couple the two spinor components. Hence, we consider the familiar Schrödinger equation for 
an object in a purely scalar potential, except that it operates on a two-component spinor.  

A force-free solution of the Schrödinger equation in this case is ψ(𝑐𝑐) = (cos(𝑐𝑐/2)
sin(𝑐𝑐/2)). For 

calculating the probability density in the spinor case, we have to assume a projection onto the 
tonics. If the tonics is the unit vector (1

0), the resulting probability density is exactly as before 

– see Eq. (17). In case, we take another vector as tonics, let say 1
√2
(1

1), the result is different: 
 
(19) |ψ(𝑐𝑐)|2 = (sin (𝑐𝑐

2
) + cos (𝑐𝑐

2
))2 = 1

2
(1 + sin (𝑐𝑐)) = 1

2
(1 + cos (𝑐𝑐 − 𝜋𝜋

2
)) 

 
The difference of  𝜋𝜋

2
  in the last cosine term of Eq. (19) corresponds to a transposition by three 

half-tone steps. In the vector representation, the rotation of tonics (1
0) into the new tonic 

likewise reflects the difference of three half-tone steps. Generalizing this idea, we can prove 
the principle of transposition invariance of this simple phase model. Things are changing if 
phase shifts are included into the model (Sect. 4.3). 

4.1 The spatial deformation model 

                                                 
12 The solution of the full wave with the stationary part is given by 𝑒𝑒−𝑖𝑖𝑖𝑖𝑐𝑐  ψ(𝑐𝑐) 
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In the simplest case, the spatial deformation model (beim Graben & Blutner, 2017) can be 
described by the following wave function: 
 
(20) ψ(𝑐𝑐) =  cos(𝛾𝛾(𝑐𝑐)/2) . 
 
This wave function yields the following  probability density:  
 
(21) |ψ(𝑐𝑐)|2 =  cos(𝛾𝛾(𝑐𝑐)/2)2 =  1

2
(1 + cos (𝛾𝛾(𝑐𝑐))) 

 
We interpret these probability densities as attraction potential for the twelve tones localized at 
𝑐𝑐𝑘𝑘 = 𝜋𝜋𝑘𝑘

6
, for k ∈ {0, 1, …, 11}c   

Next, we have to consider a particular choice of the function 𝛾𝛾(𝑐𝑐), which  we call 
deformation function: 
 
(22) 𝛾𝛾(𝑐𝑐) = 𝑗𝑗 +  1/𝑗𝑗3 (𝑐𝑐 − 𝑗𝑗)4 
 
The deformation function 𝛾𝛾(𝑐𝑐) increases with the fourth power of the difference between x 
and the localization of the triton in the Bloch circle (at 𝑗𝑗). The particular form of the 
deformation function fits static attraction by assuming that the fixpoints of the gauge 
transformation are the tonic (corresponding to 𝑐𝑐 = 0) and the triton (corresponding to  𝑐𝑐 =
𝑗𝑗). These assumptions reflect two plausible outcomes of static attraction experiments: (a) 
minimum attraction for the triton, and (b) maximum attraction for the tonics. Figure 4 shows 
the corresponding kernel function sing the equations (21) and (22). 
 

 

 
 
Figure 4: Static kernel (solid) and kernel resulting from the qubit model (dashed). The kernel function 
resulting from the hierarchic model is shown in grey. Note that the two endpoints corresponds to the 
tonic tone.  

 
Earlier research (beim Graben & Blutner, 2019) has shown excellent agreement with the static 
attraction data of Krumhansl and Kessler (1982) using the operation of circular convolution 
(Sect. 3.3) for extending to musical contexts defined by triadic chords. No free parameter has 
been needed to fit the data (only the exponential in the nonlinear function 𝛾𝛾(𝑐𝑐) can count as a 
parameter (the exponential 4 leads to fits that are a bit better than other choices such as 2 and 
6). 

At this point, it is useful to ask for the connection between the deformation model and the 
hierarchical model. As one sees from Fig. 5, the kernel function of static tonal attraction 
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assigns the maximum value to the target tone (say C). The two neighbours on the circle of 
fifth (i.e., G and F) get an attraction value that is about half of it. The attraction values of all 
other tones is very low such that we can neglect them. Hence, when we construct the 
attraction profiles for a certain context given by a triad (say CEG), we get an approximate 
reconstruction of the hierarchic model. The three tones of the triad (CEG) get a very high 
value; C and G a bit higher than E because of the convolution operation. Next, the neighbours 
of the triadic tones (C: G, F; G: D, C; E: B, A) are all diatonic tones and get an attraction of 
about 50%. Hence, we can account for all levels of the hierarchic model shown in Tab. 1 
besides the octave level (resulting in four different degrees of attraction).13 

4.2 A gauge theoretic formulation of the spatial deformation model 

In order to give a gauge-theoretic formulation of the spatial deformation model, we have to 
replace the scalar wave function given in (20) by a two-dimensional spinor function:     

 
 

(23) (ψ+(𝑐𝑐)
ψ−(𝑐𝑐)) =  (

cos(𝛾𝛾(𝑐𝑐)/2)
sin(𝛾𝛾(𝑐𝑐)/2)) 

 
Now we represent the tonic by the Hilbert-space vector (1

0). Then we straightforwardly obtain 
an expression for the probability density:  
 
(24)  |ψ(𝑐𝑐) ∙ (1

0) |2 = cos2 (𝛾𝛾(𝑐𝑐)
2
) = 1

2
(1 + cos (𝛾𝛾(𝑐𝑐))) 

 
This is exactly the result we have derived in Eq. (21). Next, let us consider the real-valued 
subpart of the SU(2) representation as given in (11). This is exactly the representation of two-
dimensional rotations in the real Hilbert space, i.e. SO(2). With the help of this operator, we 

can rotate the free spinor (ψ̃+(𝑐𝑐)
ψ̃−(𝑐𝑐)

) = (cos(𝑐𝑐/2)
sin(𝑐𝑐/2)) into the spinor (23) deformed by gauge 

forces: 
 
(25) [𝐸𝐸 (1

2
(𝛾𝛾(𝑐𝑐) − 𝑐𝑐), 0, 0)] (cos(𝑐𝑐 2⁄ )

sin(𝑐𝑐 2⁄ )) = (
cos( 𝛾𝛾(𝑐𝑐)/2)
sin(𝛾𝛾(𝑐𝑐)/2) ) 

  
Intuitively, tones x can be described by certain positions in the Bloch circle (angle x). The 
gauge transformation rotates the corresponding vectors by an angle 𝛾𝛾(𝑐𝑐) − 𝑐𝑐 in the Bloch 

                                                 
13 At this point readers not educated with quantum mechanics may ask what is the advantage of such complex 
theories as quantum field theory against the much simpler and classical idea of the hierarchical model? The 
answer is that the quantum model allows to treat the attraction data with less stipulations than the hierarchical 
model where all levels of the hierarchy have to be stipulated. Further, the quantum model allows generalizations 
which are not obvious for the hierarchical model. For instance, the quantum model but not the hierarchical model 
relates static and dynamic attraction phenomena. Further, the quantum model but not the hierarchical model 
allows to approximate the differences between major and minor modes. The situation is similar to the situation in 
physic more than 100 years ago where the spectrum of the hydrogen atoms has been investigated and described 
by the simple Rydberg formula (Rydberg, 1890). The derivation of this formula by Bohr's atomic model and 
later by quantum theory counts as a milestone of physical progress, because of its explanatory value and 
numerous possible generalisation in the field of atomic spectra.  
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circle.14 The addition theorems of cosine/sin-functions give the rotated vectors as exhibited in 
Eq. (25). Figure 5 illustrates the gauge transformation depictured in the circle of fifth.  The 
twelve tones, which are uniformly distributed over the circle and localized at 𝑐𝑐𝑘𝑘 = 𝜋𝜋𝑘𝑘

6
, for k ∈ 

{0, 1, …, 11}, are mapped by the gauge transformation into a deformed distribution.  
    

Figure 5: Illustration of SO(2) gauge transformation for the twelve tones (originally located at 
𝑐𝑐𝑘𝑘 = 𝜋𝜋𝑘𝑘

6
, for k ∈ {0, 1, …, 11} in the Bloch circle). The involved (static) gauge function is 𝛾𝛾(𝑐𝑐) =

𝑗𝑗 + 1/𝑗𝑗3 (𝑐𝑐 − 𝑗𝑗)4.  
 
Figure 5 illustrates that all tones with exception of the tonics itself and the triton are moved 
away from the tonics into the direction of the triton. Intuitively, it may be helpful to 
conceptualize this by 'gauge forces' that cause the deformation depictured in this figure. 

Now consider a local gauge transformation, which converts the force-free solution of the 
Schrödinger equation into the deformed solution under the influence of gauge forces when we 
assume that 𝛾𝛾(𝑐𝑐) = 𝜃𝜃(𝑐𝑐) − 𝑐𝑐:  
 

(26)  (ψ̃+(𝑐𝑐)
ψ̃−(𝑐𝑐)

)⟶ (ψ+(𝑐𝑐)
ψ−(𝑐𝑐)) = (cos 𝜃𝜃(𝑐𝑐) − sin 𝜃𝜃(𝑐𝑐)

sin 𝜃𝜃(𝑐𝑐) cos 𝜃𝜃(𝑋𝑋) )  (ψ̃+(𝑐𝑐)
ψ̃−(𝑐𝑐)

) = (
cos( 𝛾𝛾(𝑐𝑐)/2)
sin(𝛾𝛾(𝑐𝑐)/2) ) . 

 
Let us see the correspondence to the free Schrödinger equation (15) in case the wave function 
ψ(𝑐𝑐) = ψ̃(𝛾𝛾(𝑐𝑐)) is considered. As argued in detail in another paper (beim Graben & Blutner 
2017, 2018), the function ψ has to satisfy the following equation for both components of the 
spinor: 
 
(27) −𝜕𝜕2ψ𝑖𝑖(𝑐𝑐)

𝜕𝜕𝑐𝑐2
+ 𝛾𝛾

′′(𝑐𝑐)
𝛾𝛾′(𝑐𝑐)  𝜕𝜕ψ𝑖𝑖(𝑐𝑐)

𝜕𝜕𝑐𝑐
− 𝛾𝛾′(𝑐𝑐)2 ψ𝑖𝑖(𝑐𝑐) = 0 

 

                                                 
14 In order to avoid confusions: The variable x measures the angles in the Bloch-circle. It runs from 0 to 2𝑗𝑗. The 
'real' angles of the Hilbert-space vectors are half of it. Thus, in the 'real' rotation matrix (25) we have to divide 
the angles of the Bloch circle by the number 2 in order to get the angles in the rotation matrix. 
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This equation is derived by differentiating ψ(𝑐𝑐) twice and eliminating trigonometric terms. In 
order to get the standard stationary form of the Schrödinger equation, we decompose the 
Hamiltonian into three parts: 

(28) 𝐻𝐻 = 𝑇𝑇 + 𝑀𝑀 + 𝑈𝑈 with 

a. 𝑇𝑇 = − 𝜕𝜕2

𝜕𝜕𝑐𝑐2
 

b. 𝑀𝑀 = 𝛾𝛾′′(𝑐𝑐)
𝛾𝛾′(𝑐𝑐)

𝜕𝜕
𝜕𝜕𝑐𝑐

 

c. 𝑈𝑈 = 𝐸𝐸 − 𝛾𝛾′(𝑐𝑐)2 . 
 
Then Eq. (27) takes the standard form of an eigenvalue problem: 
 
(29)    [𝑇𝑇 + 𝑀𝑀 + 𝑈𝑈] ψ𝑠𝑠(𝑐𝑐) = 𝐸𝐸 ψ𝑠𝑠(𝑐𝑐). 
 
It is obvious to call the operator T the operator of kinetic energy and to call the operator U  the 
operator of potential energy. Depending of the special form of the gauge field 𝜃𝜃(𝑐𝑐) (or 𝛾𝛾(𝑐𝑐)) 
the kind of potential energy that is involved is alike a 'gravity' potential, a 'harmonic oscillator' 
potential or what else. The operator M  has been called magnetism in analogy to the physical 
examples. The details of gauge function 𝛾𝛾(𝑐𝑐) specify the magnetism function.  

So far, we can see it is mainly the sum of the three energies that makes sense for a musical 
interpretation. The decomposition into the three parts currently cannot be seen being related 
with any musical phenomenon. To be sure, this decomposition has absolutely nothing to do 
with forms of the metaphoric model that use different contributions of "folk-physical" forces 
in a linear regression analysis of tonal attraction (e.g. Larson 2012). 

We also should stress the positive outcomes of the present gauge analysis. In contrast to 
the mentioned analyses by linear regression, the gauge-theoretic analysis is not ad hoc and 
does not require many arbitrary stipulations. The only assumption we have to make is to make 
a choice of the gauge field 𝛾𝛾(𝑐𝑐). We have decided to approximate the gauge field by the 
function (22) in order to express the benefits of the hierarchical model. However, the present 
formulation is more than a sophisticated conversion of the hierarchic model into an oversized 
mathematical model. Conceptually, it is a direct and realistic introduction of musical forces 
based on the lead of mainstream physical ideas. Empirically, we will show how it helps to 
relate static and dynamic attraction models. Further, we will demonstrate that a modification 
of the model by exploiting the idea of symmetry breaking can help to solve the old problem of 
the harmonic differences between major and minor modes of tonal music.  

We mentioned already that the sum of the three operators gives an energy density that is 
proportional to the probability density. A further plausible assumption is that the potential 
energy is an indicator of stability – cf. Graben & Blutner (2017) and the remark at the end of 
this subsection. In the following figure, we compare the overall energy density with the 
contribution resulting from the potential energy density (summing up M and U).  
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Figure 6: Energy densities of the deformation model. Dashed: total energy density; solid: density of 
potential energies. 
 

As pointed out in more details in beim Graben & Blutner (2017), the overall energy density 
(proportional to the static attraction potential) has a maximum at the tonic tone (localized at 0 
and 2 π in Figure 6) and a minimum for the tritone localized at π). The sum of the potential 
energies becomes minimal toward the tonic regions. This explains the attracting force of the 
tonic for all other tones. Interestingly, there is a local minimum at the localization of the 
triton, making the triton to a kind of 'tonal trap' for tones of the region D, A …E♭, B♭ 
(corresponding to the interval from .8 to 5.4). Further, Figure 6 shows that there are two 
instable equilibria around x = .8  (D) and x= 5.4 (B♭).  

At this point, we should explain the content of the mathematical conception of stability. In 
quantum theory, there is the distinction between energetic stability of matter and dynamic 
stability of motion. The former notion refers to the stability of atoms or macroscopic matter. 
Usually it is explained by the uncertainty relation (in a particular form) and by Pauli's 
exclusion principle (Lieb & Seiringer, 2010). The latter notion derives from ideas of  
Lyapunov and the existence of the so-called Lyapunov function the (local) minima of which 
describe to stable configuration of a dynamic system (Lyapunov, 1966). In the context of 
cognitive musicology, the stability of tonal movements is a point of interests – clearly 
referring to the concept of dynamic stability. Understandably, the potential energy of a system 
is such a Lyapunov function. And the gradients of the energy density correspond to the 
mathematical notion of forces, both in mechanics as in musicology. They indicate the 
direction of physical or tonal movements. Summarizing, the present analysis indicates that 
tonic appears as a center of force. In contrast, the tritone functions as a tonal trap attracting 
nine of the twelve tones with a moderate force. 

4.3 Gauge models based on phase shifts  

So far, we have modelled static attraction profiles by spatial deformations – an analysis that 
provides excellent empirical support. Hence, we can state that the deformation model is an 
excellent model for approaching the static attraction case. For the dynamic attraction profiles 
(chord resolution), in contrast, the situation is more difficult. In principle, we could follow 
three different  approaches for finding a satisfying solution. First, we could use the phase 
model for approaching the dynamic attraction profiles. That means we could introduce proper 
gauge forces into the phase model – using a nonlinear gauge field. This variant was developed 
by Blutner (2019). Unfortunately, the model allows fitting the empirical data (Woolhouse, 
2009) to a moderate degree only. Moreover, the model is not truly explanatory since it 
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introduces at least two free parameters.  Second, we could exclude  the phase model and 
consider a different variants of the deformation model that allows describing the  dynamic 
attraction data. This variant was developed in beim Graben & Blutner (2019). Unfortunately, 
this model is not very explanatory again since it requires fitting several parameters again. 
Third, we could consider a combination of the deformation model with the force-free phase 
model. This has the advantage to satisfy the idea of Ball (2010) that static forces allow to 
infer dynamic forces.  

In the rest of this section, we will develop the third variant and we will explain the 
advantages of this approach. We will start with developing the phase model in the force-free 
case. For didactical reasons we start with a very naïve model considering the stationary 
Schrödinger equation (Subsection 4.3.1).  Then we explain a spinor phase model introducing 
two-component wave functions based on the so-called Schrödinger-Pauli equation 
(Subsection 4.3.1).  This approach allows a more satisfying treatment of the tonic context than 
the naïve approach. In Section 4.4, we use this phase model in tandem with the deformation 
model. This account gives a fair description of dynamic attraction data and it has a more 
explanatory power than the previous models for investigating the data of Woolhouse (2009). 
We demonstrate the explanatory value in connection with the breaking of mirror symmetry 
(Sections 4.5 and 4.6). 
 
4.3.1 Naïve Gauge models 

The general matric form of a gauge transformation for spinors has been given in (8). A 
subspecies of this gauge was considered in the previous section, the SO(2) gauge. In this and 
the following Section we consider gauges isomorph to U(1) as specified by (12) for the spinor 
case.  In the simpler case of scalar wave functions, this gauge relates to a single phase 
transformations. In the local case, we assume that all observable effects are invariant when 
local phase transformations are applied:  
 
(30)  ψ(𝑐𝑐)  ⟶ ψ̃(𝑐𝑐) = ψ(𝑐𝑐) 𝑒𝑒𝑖𝑖𝑖𝑖(𝑐𝑐) 
 
The idea now is to assume that local phase invariance is the gauge symmetry that we have to 
assume in quantum physics. 

Introducing a local phase shift as defined by Eq. (30) and the idea of gauge invariance 
automatically converts the force-free solution of the Schrödinger equation into a solution 
under the influence of gauge forces. To see the idea, let us consider the following free wave 
function sin(𝑐𝑐/2) which is gauged by the local phase transformation 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑐𝑐). 
 
(31)  ψ(𝑐𝑐)  = sin(𝑐𝑐/2) 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑐𝑐) 
 
A simple consequence of this choice is the following function of probability density: 
 
(32) ψ(𝑐𝑐)∗  ∙ ψ(𝑐𝑐) = sin(𝑐𝑐 2⁄ )2 = 1/2(1 − cos(𝑐𝑐)) 
 
Obviously, the probability density does not depend on the gauge function 𝛿𝛿(𝑐𝑐). The form 
given in (32) contrasts with earlier probability density given in (17). It is based on the wave 
function  cos(𝑐𝑐/2) 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑐𝑐), which is orthogonal to the wave function (31). We will see that 
the two wave functions based on cos(𝑐𝑐/2) or sin(𝑐𝑐/2) play different roles. The former 
approximates static attraction (with maximum probability for the tonic).  The latter 
approximates dynamic attraction (with minimum probability for the tonic).  
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For performing a gauge analysis, let is differentiate the function ψ(𝑐𝑐) in (31) twice and 
eliminating trigonometric terms. Then the function ψ(𝑐𝑐) is a solution of the following 
differential equation: 
 
(33)  −ψ′′(𝑐𝑐) − 2𝑠𝑠 𝛿𝛿′(𝑐𝑐)ψ′(𝑐𝑐) − 𝑠𝑠 𝛿𝛿′′(𝑐𝑐)ψ(𝑐𝑐) + (𝐸𝐸 − 𝛿𝛿′(𝑐𝑐)2) ψ(𝑐𝑐)  = E ψ(𝑐𝑐).  
 
Considering the stationary Schrödinger equation in the form (15) suggests a gauged 
Hamiltonian, which consists of a sum of three operators: 

(34)   𝐻𝐻 = 𝑇𝑇 + 𝑀𝑀 + 𝑈𝑈 with 

a. 𝑇𝑇 = − 𝜕𝜕2

𝜕𝜕𝑐𝑐2
 

b. 𝑀𝑀 = −2𝑠𝑠 ∙ 𝛿𝛿′(𝑐𝑐) 𝜕𝜕
𝜕𝜕𝑐𝑐

 

c. 𝑈𝑈 = 𝐸𝐸 + 𝛿𝛿′(𝑐𝑐)2 − 𝑠𝑠 𝛿𝛿′′(𝑐𝑐). 
 
As in the spatial deformation model discussed in the previous section, it is obvious that the 
operator 𝑇𝑇 is the operator of kinetic energy density (inertia) and the operator 𝑈𝑈 is the potential 
energy density. The operator 𝑀𝑀 (‘magnetism’) collects the remaining terms. 

For specifying the gauge field, a simple suggestion is the following linear ansatz: 
 

(35) 𝛿𝛿(𝑐𝑐) = 𝑐𝑐 . 
 
This means that the potential function (34)c is a constant function. This relates to a force-free 
case even when the magnetism component (34)b is considered.15  

The sum 𝐻𝐻 of the three operators is Hermitian and has the expectation value 
1 4⁄ sin(𝑐𝑐/2)2. Figure 7 shows the expectation values for the total energy (proportional with 
probability density) and for the potential energy taking the (orthogonal) stationary wave 
function 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑐𝑐)cos(𝑐𝑐/2) (left hand site) and 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑐𝑐)sin(𝑐𝑐/2)  (right hand site). 

 

       
 
Figure 7: Left hand site: Phase model with stationary wave function ψ(𝑐𝑐) = cos(𝑐𝑐

2
)𝑒𝑒−𝑖𝑖𝑖𝑖(𝑐𝑐). Right hand 

site: Phase model with stationary wave function ψ(𝑐𝑐) = sin(𝑐𝑐
2
)𝑒𝑒−𝑖𝑖𝑖𝑖(𝑐𝑐). Dashed: total energy density; 

solid: density of potential energies (without the imaginary part of magnetism).  
 

                                                 
15 Taking the wave function (31) for calculating the expectation values and (35) for the phase function, the 
contribution of magnetism gives two terms due to the application of the product rule for 𝜕𝜕

𝜕𝜕𝑐𝑐
sin(𝑐𝑐/2) 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑐𝑐): 

(i) a contribution that is the probability density multiplied with the factor −2𝑠𝑠 ∙ (−𝑠𝑠)𝛿𝛿′(𝑐𝑐)2 =  −2; 
(ii) a contribution that is purely imaginary. It compensates the imaginary part of the kinetic energy density. 
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What are the main properties of the calculated energy densities?  First, it is obvious that for 
the wave function cos(𝑐𝑐

2
)𝑒𝑒−𝑖𝑖𝑖𝑖(𝑐𝑐)  the potential energy density has the maximum for the triton 

and the minimum for the tonic tone. The converse holds for the total energy density, which is 
proportional to the probability density. Hence, the tonic tone is the stable endpoint. For the 
tonic, we find maximum probability density and minimum potential density. On the other 
hand, the triton is in an instable equilibrium state. This correspond to the case of static 
attraction.  

Next, consider the wave function sin(𝑐𝑐
2
)𝑒𝑒−𝑖𝑖𝑖𝑖(𝑐𝑐).  In this case, we find the situation 

depictured on the right hand side of Figure 7. In this case, the potential has its minimum for 
the triton and the maximum for the tonic. The converse holds for the total energy density 
(probability density), which has its maximum at the triton position and minimum for the tonic. 
We would like to interpret this as a first approximation to the dynamic attraction profile. 
However, this interpretation is rather unclear. Hence, it is fair to say that the discussed force-
free phase model is not really able to approximate the dynamic attraction case.  

Another important point is that introducing a local phase shift into the wave function as in 
(30) does not affect the resulting probability distribution. It still agrees with the results of the 
simple qubit model discussed before. However, a very different solution will result if we 
consider spinor wave functions instead of single wave functions as we did so far. The details 
we will consider in the next subsection. For the spinor's gauge model, which also will be 
based on the ‘force-free’ phase function (35), we will discuss total energy and potential 
energy in the following subsection.  

 
4.3.2 Spinor gauge models  

In the case of two component spinors (applied for spin ½ particles in physics), we will look 
for the force-free wave equation. This is a special case of the so-called Schrödinger-Pauli 
equation, which sometimes has been seen as a special case of the Dirac equation in the non-
relativistic limit. The following formula gives a (minimalist) solution of the Schrödinger-Pauli 
equation in the force-free case (cf. Blutner 2016): 

(36) ψ(𝑐𝑐) = (
𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐/2)
𝑐𝑐𝑠𝑠𝑘𝑘(𝑐𝑐/2)) 

 
For a gauge-theoretic analysis, we have to consider the matrix form of the SU(2) group as 
given in (8). It provides a unitary transformation of spinors with the real parameters 𝜃𝜃, 𝛿𝛿, 𝜏𝜏.  

If we want to simulate the properties of the tones along the circle of fifth, we have to find a 
proper path through this space of parameters. For the present phase model, we consider 
𝛿𝛿(𝑐𝑐) as the only relevant parameter and chose  𝜃𝜃(𝑐𝑐) = 0, 𝜏𝜏(𝑐𝑐) = 0. Applying the 

corresponding unitary transformation 𝐸𝐸(0, 𝛿𝛿(𝑐𝑐), 0) = 1
√2
(𝑒𝑒

−𝑖𝑖𝑖𝑖(𝑐𝑐) 0
0 𝑒𝑒𝑖𝑖𝑖𝑖(𝑐𝑐))  to the spinor's 

wave function (36), we get the following transformed wave function (for details and 
motivation see Appendix 2): 
 

(37) ψ(𝑐𝑐) = 1
√2
(𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐 2⁄ )𝑒𝑒−𝑖𝑖𝑖𝑖(𝑐𝑐)

𝑐𝑐𝑠𝑠𝑘𝑘(𝑐𝑐 2⁄ )𝑒𝑒𝑖𝑖𝑖𝑖(𝑐𝑐) ) 

 
In quantum field theory, the projections of the field vectors on certain states provides the 
corresponding probability densities. In the simplest case, we project onto the vector (0

1). This 

corresponds to the projection operator (0 0
0 1) and we can calculate the probability density 
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relative to this operator by calculating its expectation value for our stationary wave function 
(37). The result is identical with the scalar case (32) considered before.16  

However, inspirited by the qubit model with phase factors (Sect. 3.2), we can introduce 
another tonic operator 𝕋𝕋, which describes the projection onto the tonic vector 1

√2
(1

1): 
 
(38) 𝕋𝕋 = 1

2 (
1 1
1 1) 

 
With the help of this operator, the probability density can be calculated as follows: 

(39) ψ(𝑐𝑐)∗ ∙ (𝕋𝕋 ψ(𝑐𝑐)) = 1
2

(1 + cos 2𝛿𝛿(𝑐𝑐) cos (𝑐𝑐 − 𝜋𝜋
2

)) 

 
Taking the series of points 𝑐𝑐𝑘𝑘 = 𝜋𝜋(𝑘𝑘−3)

6
= 𝜋𝜋 𝑘𝑘

6
− 𝜋𝜋

2
, the following probability distribution will 

result: 
 
(40) 𝑃𝑃(𝑘𝑘) =  1

2
(1 + cos(�̌�𝛿(𝑐𝑐𝑘𝑘)) cos (𝑗𝑗 (𝑘𝑘 − 3) 6⁄ )), with �̌�𝛿 = 2𝛿𝛿. 

 
This is exactly the earlier distribution (6) of the qubit model with phase parameters. Again, 
the tonic is represented by 𝑘𝑘 = 3. Hence, the spinor model produces the same probability 
distribution as the qubit model considering the phase parameters.  

In contrast with the deformation model, the spinor phase model gives an opportunity for 
calculating the dynamic attraction potential. Further, it equally allows the introduction of 
gauge forces – for example by using a simple ansatz for the phase function 𝛿𝛿(𝑐𝑐) as in eq. 
(35).  

 
 

 
 
Figure 8: Dynamic kernel functions for the phase model (solid) contrasted with the ICP (dashed).  
 
Figure 8 shows the corresponding kernel function (with tonic at 0 and 2 𝑗𝑗 and triton at 𝑗𝑗 –  
using the new variable 𝑦𝑦 = 𝑐𝑐 − 𝜋𝜋

2
). This could be seen as a rough approximation to the ICP 

attraction kernel. Unfortunately, the correlation with the ICP kernel is very low (R = 0.1)  (see 

                                                 
16 When we project onto the vector (0

1), instead, we get the case described in (17) which provides an 

approximation to the static attraction profile. Of course, the projection operator in this case is (1 0
0 0) . 
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Table 2 in Section 4.2). Hence, we can conclude that the force free spinor model does not give 
a reasonable approximation to the dynamic attraction case.  

Despite of this negative result, it is opportune to  consider the energy densities in the spinor 
model. We have to use the following operators (see Appendix 3):  

(41)   𝐻𝐻 = 𝑇𝑇 + 𝑀𝑀 + 𝑈𝑈 with 

a. 𝑇𝑇 = − 𝜕𝜕2

𝜕𝜕𝑐𝑐2
 

b. 𝑀𝑀 = −2𝑠𝑠 ∙ 𝛿𝛿′(𝑐𝑐)𝜎𝜎3
𝜕𝜕
𝜕𝜕𝑐𝑐

 

c. 𝑈𝑈 = 𝐸𝐸 + 𝛿𝛿′(𝑐𝑐)2 − 𝑠𝑠𝛿𝛿′′(𝑐𝑐)𝜎𝜎3 .17 
 
An explicit calculation of the energy densities of these operators based on the phase shift 
function (35) and the tonic operator (38) is straightforward. Figure 9 shows the total energy 
density and the density of potential energies (left hand side). Note that there are no real forces 
at work given the choice of (35) as gauge function of the phase model (based on the charged 
current). Note further that we have re-centred the curves and localized the tonic at position x = 
0 of the manifold space and the triton at x = π. 
    

       
  
Figure 9: Phase model with stationary wave function as given in (37) in the static case. Dashed: total 
energy density; solid: density of potential energies (without the imaginary part of magnetism). Left hand 
side: kernels; right hand side: averaging for C-major triad. 
 
As in the cases considered before, the total energy density corresponds with the probability 
distribution of the dynamic attraction function.  

On the right hand side of Figure 9 we have averaged over the tonic triad CEG of C-major. 
We get three local minima of the potential function conforming to the tones D (at1.0), #F (at 
3.2) , and #A (at 5.2) – an outcome that is not plausible from an empirical point of view. In 
the following subsection, we make an explicit comparison with the empirical data and show 
that the model plays a superb role when considered in tandem with the deformation model.  

4.4 A SU(2) Gauge model for static and dynamic attraction 

So far, we have modelled (i) static attraction profiles by spatial deformations and (ii) dynamic 
attraction profiles by local phase shifts. Further, we have shown that the deformation model is 
an excellent model for approaching the static attraction case. In contrast, the phase model was 
much less successful for approaching the dynamic attraction data.  

We have already mentioned three variants of how we could improve the theory. First, we 
could exclude the phase model and consider a variant of the deformation model that fits the  
dynamic attraction data (beim Graben & Blutner, 2019). Second, we could introduce proper 

                                                 
17 Note that for calculating the corresponding energy densities, we have to compose these operators with the 
tonic operator. That means, the relevant operators are  𝐻𝐻 𝕋𝕋, 𝑇𝑇 𝕋𝕋, and  𝑈𝑈 𝕋𝕋 . 
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gauge forces into the phase model – using a nonlinear gauge field instead of the linear field 
described by (35) (Blutner, 2019). Third, we could consider a combination of the deformation 
model with the force-free phase model in order to simulate the idea of Ball (2010) that the 
static forces allow to infer a certain type of dynamic forces. In this subsection we will develop 
the third variant and we will explain the advantages of this approach.   

From the theoretical point of view, the basic symmetry underlying the present analysis is 
the SU(2) symmetry. This symmetry can be described by the matrix form (8) transforming a 
two-dimensional spinor space. This transformation is determined by three generators that are 
connected with three real parameters 𝜃𝜃, 𝛿𝛿, and 𝜏𝜏. So far, the static case was modelled by a 
nonlinear SO(2) gauge function (in terms of 𝜃𝜃) introducing real gauge forces, see Eq. (11). 
The question is how we can best describe the dynamic attraction case, in particular, the 
resolution of different chords. It is suggested that the phase gauge is essential – conforming 
with the two generators given in (12) and (13).  

The application of the phase gauge can happen in different ways. In the second variant 
explained above, a nonlinear phase gauge was introduced for fitting the available data of 
chord resolution. Unfortunately, the quality of the fit was not really satisfying (Blutner, 2019). 
Further, we see a conceptual problems with this approach because it does not make a 
distinction between forces that apply for the resolution of chords and musical forces that 
direct the development of melodies and go beyond the resolution of musical chords. Further, 
the idea of Ball (pointed out in Sect. 2.3) is not respected, which claims that the existence of 
static tonal forces has a direct influence on the resolution of chords. Another problem is the 
description of the asymmetry between major and minor chords. This phenomenon  cannot be 
approached by kernel functions that are mirror-symmetric relative to the triton. The breaking 
of the mirror-symmetry can be handled in an arbitrary way only in the described variants.  

In the present subsection, we therefore suggest a third variant which combines the SO(2) 
gauge (deformation model) with a U(1) gauge (phase model). Importantly, the phase gauge is 
described by a linear phase function. This leads to a constant potential function, which does 
not introduce their own dynamic forces. However, the combination with the SO(2) gauge of 
the deformation models results in the development of which can be interpreted in the spirit of 
Ball (2010). It suggest a mechanism that derives certain dynamic forces from purely static 
ones. Further, we will demonstrate that the combination of the SO(2) gauge with a weakly 
coupled U(1) gauge provides the asymmetry that is required for deriving the asymmetry 
between major and minor chords. 

The following formulas collect the effects of the gauge transformations for calculating the 
probability densities for spinor gauge models. In all cases, the wave functions ψ𝐺𝐺 result from 
applications of the gauge transformations G to the free spinor wave function ψ: ψ𝐺𝐺 = 𝐺𝐺(ψ). 
We consider the SO(2) gauge function applied in (26), related to the deformation field.  We 
also consider the spinor gauge model based on phase shifts (see Sect. 4.4) with the gauge 
function of (37), related to the phase field. With the tonic operator (38), then we get the 
following distributions: 

(42) 𝑝𝑝𝐺𝐺(𝑐𝑐) =  ψ𝐺𝐺(𝑐𝑐)∗ ∙ (𝕋𝕋 ψ𝐺𝐺(𝑐𝑐)) 

a. 𝑝𝑝𝐷𝐷(𝑦𝑦) = 1
2
(1 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾(𝑦𝑦))  (deformation field)  

b. 𝑝𝑝𝑃𝑃(𝑦𝑦) = 1
2

(1 + cos 2𝛿𝛿(𝑦𝑦 + 𝑗𝑗/2)  𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦)  (phase field)  

c. 𝑝𝑝𝐷𝐷+𝑃𝑃(𝑦𝑦) = 1
2

(1 − cos 2𝛿𝛿(𝑦𝑦 + 𝑗𝑗/2) 𝑐𝑐𝑠𝑠𝑘𝑘 (𝑦𝑦 − 𝛾𝛾 (𝑦𝑦 + 𝜋𝜋
2
)) cos(𝑦𝑦) + 1

4
sin (2𝑦𝑦 −

𝛾𝛾 (𝑦𝑦 + 𝜋𝜋
2
)) +  1

4
sin (𝛾𝛾 (𝑦𝑦 + 𝜋𝜋

2
))   (combined field) 
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Note that the variable 𝑦𝑦 = 𝑐𝑐 − 𝑗𝑗/2 ranges from 0 (tonic) to 2 𝑗𝑗 (tonic again), the triton is 
marked by 𝑗𝑗. Formula (a) refers to the spatial deformation model, and (b) to the phase shift 
model.  Both formulas are mirror-symmetric around the triton (at 𝑗𝑗) if the functions 𝛾𝛾 and 𝛿𝛿 
are chosen as in (22) and (35). 

Interestingly, the combination of both models (gauge transformation D in tandem with 
gauge transformation P), is not mirror-symmetric around the triton. As a matter of fact, the 
combination is not simply the sum of the two terms given in (a) and (b). Rather, it contains 
complicated interference terms that violate the mirror-symmetry. In order to get a visual 
representation of the suggested kernel functions, we use the simple choice of the underlying 
gauge fields for the deformation field and the phase field introduced earlier – cf. (22) and 
(35), repeated here:    
 
(43) a.  𝛾𝛾(𝑐𝑐) = 𝑗𝑗 + (𝑐𝑐 − 𝑗𝑗)4/𝑗𝑗3  

b.  𝛿𝛿(𝑐𝑐) =  𝑐𝑐 
 
On the basis of these functions, the resulting kernel functions look as follows (See Figure 10):   
 

   
   
        (a)                   (b)                  (c) 
 

Figure 10: Kernel function for (a) deformation (neutral current), (b) phase (charged current), (c) 
the equal combination of both gauge fields  

 
Table 2 shows the correlation functions of the three simple models based on (a) the 
deformation field alone, (b) the phase field alone, and (c) a combination of both fields in 
equal ratios. Interestingly, the combination of the first two models shows a breaking of the 
centre symmetry resulting from the interference of the two involved gauge fields.  
 
Correlation with dynamic 

attraction data  
ICP Model Spinor Phase Model 

Tonic = (0
1)       Tonic = 1

√2
(1

1)     
Combined Model 

    100%            85% 

C-major .69 -.11   .14 .11 .55 
C-minor .78 .06  .28 .29 .7 

dominant seventh .75 -.2   -.08 .37 .76 
French sixth .79 0.    .05 .9 .86 

half-diminished seventh .89 .15  .19 .6 .78 
Correlations with ICP -0.1 0.1 0.4 0.6 

 
Table 2: Dynamic attraction for single and combined models.  The deformation model is based 
on the gauge field of the neutral current. The phase model is based on the corresponding gauge 
field, where different vectors for the tonic are considered. For the combination we consider two 
variants.  In the first case, both models are coupled equally (100 %). In the second case, the 
phase model is coupled with 85% only. The dynamic attraction data (Woolhouse 2009) concern 
(a) major triad CEG, (b) minor triad CE♭G, (c) dominant seventh CEGB♭, (d) French sixth CEG♭B♭, 
and half-diminished seventh CE♭G♭B♭. For all models, including the ICP model, the correlation 
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functions with the data of Woolhouse are given. Further, in the last line, the correlations 
between the ICP kernel and the kernels of the different models are shown.  

 
In order to improve the fit with the empirical data, it is suggested to vary the coupling constant 
of the charged gauge field. With a value of 85% we get the kernel function shown in Figure 11, 
which provides a satisfying fit to the data. The quality of this fit is comparable with that of the 
ICP model of Woolhouse (2009). The correlations shown in Table 2 substantiate this view.    

 

 
Figure 11: Kernel function for the combined model with an 85% coupling of the phase gauge 
field. 
 

The energy densities in the combined model are difficult to calculate. Even when the kinetic 
energy density is defined as before, the magnetic density and the potential density are more 
complex. Besides the sum of the corresponding terms for phase and deformation models, 
there are very complex interference terms. We therefore resign to provide a full treatment.  

4.5 The hierarchical model and the connection between static and dynamic attraction 

It is useful to ask for the connection between the deformation model and the hierarchical 
model. As you see in Figure 4, the kernel function of (static) tonal attraction assigns the 
maximum value to the target tone (say C). The two neighbours on the circle of fifth (i.e., G 
and F) get an attraction value that is about half of it. The attraction values of all other tones is 
very low such that we can neglect them. Hence, when we construct the attraction profiles for a 
certain context given by a triad (say CEG), we get an approximate reconstruction of the 
hierarchic model. The three tones of the triad (CEG) get a very high value; C and G a bit 
higher than E because of the convolution operation. Next, the neighbours of the triadic tones 
(CG,F vs. GD,C vs. EB,A) are all diatonic tones and get an attraction of about 50%. 
Hence, we can account for all levels of the hierarchic model shown in Table 1 with exception 
of the octave level. Concluding, the instrument of analytical functions – by using a strongly 
damped function – provides the mathematical instrument for describing the hierarchical 
model. 

As outlined in Sect. 2.3, Philip Ball has proposed a connection between static and dynamic 
attraction (Ball 2010). He suggested a simple, tentative principle. It says that melodic forces 
are dynamic forces directed towards the chromatically closest tones that are higher in the 
static attraction hierarchy than the trigger. For example, consider the key of C-major and the 
trigger B. Then the chromatically closest tones that are higher in static attraction than B are 
the tones C and A.  

The present gauge model (combining neutral and charged currents) equally establishes a 
close connection between static and dynamic attraction. Hence, the combination of 
deformation model and phase model (in its simplest form with a constant gauge field) gives a 

1 2 3 4 5 6
Tone

0.2

0.4

0.6

0.8

1.0

Attraction



 29 

novel description of the dynamic attraction data of Woolhouse (2009). We have noted already 
that the combined model violates the mirror symmetry (relative to the position of the triton). 
In other words, it breaks the mirror symmetry of the dynamic kernel function. Since the 
deformation model itself satisfies mirror symmetry, we have to recognize that the 
combination with the gauge field of the charged current (= phase model) is responsible for the 
broken mirror symmetry.  

Assuming that gauge fields are miracles that emerge in complex neural fields and could be 
studied in neural field theories (Coombes et al., 2014), one may wonder if the field of charged 
current has other measurable effects. If yes, this could give an independent motivation for the 
existence of this gauge field. In the next subsection, we will see that there are facts that 
suggest violations of mirror symmetry already for static attraction. In addition, we will argue 
that a very weak influence of the charged current is sufficient to explain the relevant 
phenomena. Hence, a strong coupling (85%) between neutral current and charged current 
explains dynamic attraction (Woolhouse-data) whereas a very weak coupling (around 3-4%) 
explains certain asymmetries related to static attraction.   

4.6 The breaking of the mirror symmetry of the hierarchical model  

In the preceding sections, we have considered some basic phenomena of static and dynamic 
attraction only. However, there are other fundamental phenomena which are studied in 
cognitive music theory. A very prominent phenomenon is the occurrence of graded conso-
nance/dissonance. In an indirect way, it relates to static attraction. According to Parncutt 
(1989), the degree of (musical) consonance of a chord is allied to the distribution of potential 
root tones of a chord. Hereby, the root tone can be seen as the tone with the maximum static 
attraction given the chord as musical context. In cases with a single, prominent root tone, the 
chord sound more consonant than in cases where several root tones are in competition. 
Formally, we can explain the degree of consonance of a chord as the static attraction value of 
the (root) tone with maximum attraction after normalizing the attraction profile (i.e., the 
attraction values of the 12 tones sum up to 1).  

The mirror symmetry (against the triton) of the spatial deformation model leads to 
important problems when it comes to account for the difference between major and minor 
modes. Important differences between major and minor modes were discussed already 90 
years ago (Heinlein, 1928). Recently, Johnson-Laird, Kang, and Leong (2012) have 
investigated chords including major triads (CEG), minor triads (CE♭G), diminished triads 
(CE♭G♭), and augmented triads (CEG#). The following table shows the empirical ratings of 
the chord's consonance. Clearly, the major chords exhibit the highest degree of consonance 
followed by the minor chords. Further, the diminished chords are ranked lower and, at the 
bottom, we (surprisingly) find the augmented chords.  It is not difficult to see that the 
hierarchic model and the symmetric deformation model predict the same degrees of conson-
ance for major and minor chords.  
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Triad 
Class 

Empirical Con-
sonance Rating 

Hierarchical 
Model 

Deformation 
Model 

SU(2) Model 

major 5.33 .49 .49 .495 
minor 4.59 .49 .49 .49 

diminished 3.11 .34 .36 .34 
augmented 1.74 .33 .34 .33 

 
Table 3: Empirical rankings and model predictions for common triads. The predictions of the models 
concern the strength of the tone with strongest static attraction using normalized attraction profiles. 
The symmetry breaking is provided by a weak interfering phase gauge field (2 %). It gives the asymmetry 
between major and minor.  
 
In order to model the ranking of the three triadic chords considered in Table 3, we have 
considered a modifications of the deformation model. The simple idea is to combine the 
deformation model, which is based on the gauge field of the neutral current, with a weakly 
coupled charged current. It is expected that even a weak coupling leads to interferring terms 
that can provide the wanted asymmetry. It should be stressed that this idea does not introduce 
any new parameter and is valid for a whole variety of weak couplings (from 0.1% – 8%).  

The following pictures show the increase of asymmetry with rising coupling (left 3%, 
middle 6 %, right 8 %).  

 

  
 

Figure 13: Kernel functions for the combined model with a very weak coupling of the phase 
gauge field: 3 % on the left hand side, 6 % in the middle, and 8 % and the right hand side. 
 

 
 
It is evident that the weak couplin of the charged current does not only break the mirror 
symmetry relative to the tritone but also octave equivalence (the higher tonics gets a lower 
degree of attraction than the lower). This fact may be make sense considering the different 
consonance values for different inversions of a given chord. We cannot follow this issue here.  

Summarizing, we have considered symmetry breaking in cognitive musicology, breaking 
the mirror symmetry of the tonal attraction kernel. In this way, we have overcome some 
weaknesses of the classical attraction model based on tonal hierarchies. This model cannot 
even  account for the differences between major and minor modes. Consequently, we have 
made a proposal that accounts not only for static attraction profiles but also for graded 
consonance/dissonance. The ability for unification – grasping different phenomena in a 
systematic way – is one of the trademarks of quantum theory. It is correspondingly visible 
also in the domain of quantum cognition.   
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5 Discussion and Conclusions 
In this article, we have contrasted the metaphoric and the realist conceptions of musical 
forces. Both approaches provide interesting perspectives to study static and dynamic tonal 
attraction profiles, including their structure, use, and acquisition. The metaphoric conception 
is taken from mainstream cognitive psychology initiated by work of Lakoff and Johnson 
(Lakoff, 1987; Lakoff & Johnson, 1980, 1999). The realist conception of musical forces is a 
new development within the evolving field of quantum cognition and sees musical forces as 
gauge forces. Here is a short presentation of both approaches. 

We start with the metaphoric conception. Notably, a conceptual metaphor refers to the 
understanding of one conceptual field, in terms of another. Famous examples illustrating the 
idea are "life is a journey" or "time is money". According to this concept, musical forces are 
constructs in analogy to our understanding of physical forces in folk physics. Various authors 
have proposed different forces, which are assumed to be important for musical perception. 
Linear regression analysis has been applied in order to find the total effect of musical forces. 
Unfortunately, the realized fits with empirical data are not really convincing. A sound 
grounding of forces seems not to be possible in this way. 

In contrast, the realist conception of musical forces constructs these forces as gauge forces, 
which can be derived from fundamental symmetries of the underlying theory and a gauge 
field. In the present case, we model tones by vectors of a 2-dimensional spinor Hilbert space. 
Hence, the basic symmetry group is the group of special unitary transformations (SU(2) and 
their subgroups). If you want, the proposed realist conception is a fresh realization of Kepler's 
400 years old vision of harmonices mundi (Kepler, 1619)  – the vision  unifying  physics and 
musicology. Recognizing the failing  of Kepler's ideas – mainly for reasons the concern 
certain astronomical facts not known yet 400 years ago – the present approach is based on a 
totally different scenery centered around the insights of modern quantum cognition (e.g., 
Busemeyer & Bruza, 2012). 

We have identified the symmetry group SU(2) as the fundamental group that directs the 
gauge theoretic approach. This symmetry can be described by a matrix transforming a two-
dimensional spinor space. This transformation is determined by three generators. They relate 
to three gauge fields called the neutral current (deformation model) and two variants of the 
charged current (phase model). Whereas the deformation model accounts for the static 
attraction data, a combination of deformation and phase model accounts for the dynamic 
attraction data. 

Concerning the results of the gauge theoretic modelling attitude, we will stress four 
aspects, which we see as main characteristics of the present research. First, there is the idea of 
discrete convolution – an operation that describes the modification of a kernel function by a 
distribution of several contextual elements (for instance, the tones of a single chord). Second, 
the present approach establishes a close connection between static and dynamic attraction. 
The basic idea of connecting static and dynamic attraction goes back to Ball (2010). The 
present gauge model (combining neutral and charged currents) establishes a close connection 
between static and dynamic attraction in a novel way. The gauge field of the neutral current 
(deformation model) explains static attraction. By adding the gauge field of the charged 
current (phase model), we are able to explain dynamic attraction data. Third, the combined 
model – in its simplest form with a linear gauge field for the charged current – violates the 
mirror symmetry of the dynamic kernel function. The field of charged currents has other 
measurable effects. Even with a very weak coupling of 3%, it breaks the mirror symmetry of 
static attraction kernel. This provides an unusual explanation of the fundamental asymmetry 
between major and minor modes. We can take this observation as an independent motivation 
for the existence of the gauge field of charged currents. Fourth, the notion of energy densities 
and musical forces was a particular outcome of the gauge theoretic approach. These concepts 
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are directly connected with the idea of dynamic stability as established in the theory of 
dynamical systems. 

Finally yet importantly, we will mention several unresolved issues, which should be 
essential points for further research. A first topic is the innateness issue. Already Leonard 
Bernstein has vehemently disputed the issue expressing and stressed the point that musical 
apperception is not possible without an innate cognitive background. At the end of his Norton 
lectures, he formulates his deep believe in the tonal system in the following magical phrases: 

 
I believe that from that Earth emerges a musical poetry which is by the nature of its sources 
tonal. 
I believe that these sources cause to exist a phonology of music, which evolves from the 
universal known as the harmonic series. 
And that there is an equally universal syntax, which can be codified and structured in terms of 
symmetry and repetition. (Bernstein, 1976) 

In the present context, this innate background is mainly constituted by the tonal kernel 
function and operations such as discrete convolution that are not acquired by learning.  

A second issue concerns the full dynamic attraction potential, which does not describe the 
resolution of chords only but the full development of melodies. Besides the metaphoric 
approaches we have mention in Sect. 2 there are approaches based on Bayesian networks 
(Temperley, 2008). The present approach suggest to exploit the dynamic evolution described 
by the Schrödinger equation, which can be seen as a generalization of the Kolmogorov 
forward equation (Busemeyer & Bruza, 2012).  

A third big question, which was not fully treated in this article, concerns the nature of the 
distinction between consonance and dissonance. For building the distinction, learned 
parameters seem to play a much more important role than usually assumed (McDermott et. 
al., 2016). Further, a developed theory of this distinction is important for defining the 
'meaning of music' and its emotional content (Blutner, forthcoming). 
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Appendix 1: A brief comparison with alternative models of tonal 
attraction 
In this subchapter, we consider three classes of models that deserve a serious comparison with 
the qubit model. First, there are spectral representations based on Helmholtz (1863) and his 
followers. Modern representatives of this approach are  Milne, Laney, and Sharp (2015). 
Second, we have to consider cyclic pulse representations that are useful for implementing the 
idea of tonal fusion (Stumpf, 1883, 1890). Modern representatives of this approach are  
Ebeling (2008) and  Stolzenburg (2015). The third kind of approach includes template-based 
models that approach the question how tone-like a sound is. The starting point of this research 
was set by Terhardt, Stoll, and Seewann (1982) – followed by authors such as Parncutt 
(1988), Hofmann-Engl (2004), and others. 
 The aim of the following discussion is not a careful discussion of the pros and contras of 
the three approaches. Rather, it is an identification of the conditions where the models agree 
with the qubit model and an indication how the qubit model could be modified to come closer 
to each of the three models. 
 
1 Spectral representation 

The spectral pitch class model of Milne and colleagues (Milne et al., 2015; Milne, Laney, & 
Sharp, 2016) is based on the thesis that any complex tone is represented by a spectral pitch 
class vector. Each of the 1,200 elements of this vector represents a different log-frequency in 
cents (modulo the octave to ensure octave-equivalence). The value of that element is a model 
of the expected number of partials (frequency components) perceived at that log-frequency. In 
more detail, the following assumptions are made: 
(i) For each simple tone with a certain basic frequency f, all partials with frequencies n⋅f  are 
calculated and related to one octave band.  
(ii) We smear each spectral component in the log-frequency domain to model perceptual 
inaccuracy. The width of this smearing (called smoothing width σ) is one of the parameters of 
the model 
(iii) We assume damping of amplitudes that is exponentially increasing with the number of 
partials. The steepness at which they reduce is a parameter called roll-off (ρ) . 
(iv) Complex tones composed of several simple tones relate to vector representations that are 
the superposition of the simpler representations. 
(v) Cosine similarity, which takes a value between 0 and 1, is taken to calculate the similarity 
between two vector representations. In particular, the static attraction values of a tone k given 
a triadic context c is the cosine similarity between the vector representation of tone k and the 
vector representation of the corresponding triad c.  
 
As an illustration consider Figure A1, which is self-explanatory.  
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Figure A1: The spectral pitch class vectors for a major triad (bottom) and a pitch class five semitones 
higher than the former’s root (top). The parameters are as optimized to the probe tone data  ρ = 0.67 
and σ = 5.95 (from Milne et al. (2015), p. 367). 
 
2 Cyclic pulse representations 

Recently, Ebeling (2008, 2009) gave a mathematical account of harmonicity and a modern 
explication of Stumpf's ideas in terms of autocorrelation. He defined a function called 
generalized coincidence function, which "is a measure value of overall coincidence between 
the two tones of the musical interval with regard to pulse forms and pulse widths" (Ebeling, 
2008, p. 2325). It basically is grounded on the autocorrelation of a musical interval. 

Here is a sketch of Ebeling's construction. First, the autocorrelation of the spiking sequence 
J(t) is calculated, where J(t) is the superposition of the spiking sequences generated by the two 
tones of the interval 𝑎𝑎(𝑐𝑐) and 𝑏𝑏(𝑐𝑐), i.e. 𝐽𝐽𝑠𝑠(𝑐𝑐) = 𝑎𝑎(𝑐𝑐) + 𝑏𝑏(𝑐𝑐), where the parameter s describes 
the vibration ratio (the quotient of the two involved fundamental frequencies). Generally, the 
auto-correlation is defined as 𝑅𝑅(𝜏𝜏, 𝑐𝑐) = ∫ 𝐽𝐽𝑠𝑠(𝑇𝑇

−𝑇𝑇 𝑐𝑐) 𝐽𝐽𝑠𝑠(𝑐𝑐 + 𝜏𝜏)𝑑𝑑𝑐𝑐. It is a function of the period 
under discussion (i.e., the inverse of the frequency). Second, the general coincidence function 
is defined by integrating the square of autocorrelation as a function:  𝐾𝐾(𝑐𝑐) = ∫ 𝑅𝑅2(𝑇𝑇

−𝑇𝑇 𝜏𝜏, 𝑐𝑐)𝑑𝑑𝜏𝜏.  
Ebeling (2008) explicitly performed the relevant calculation for rectangle spikes. He found 
three kinds of peaks if two spike trains 𝑎𝑎(𝑐𝑐) with frequency fa and  fb (and corresponding 
periods of Ta = 1/fa and Tb = 1/fb) are superposed: peaks arising from the autocorrelation of the 
first spike train at τ = m⋅ Ta , peaks arising from the autocorrelation of the second spike train at 
τ = n⋅ Tb , and peaks arising from the cross-correlations between the two spike trains at τ =   
m⋅ Ta  + n⋅ Tb  (with natural numbers m and n). 

Let us consider a simple example illustrating the basic idea in establishing a fundamental 
pitch. Consider spiking trains with 250 and 200 Hz. The corresponding fundamental pitch has 
a frequency of 50 Hz and can be heard as a virtual pitch (see the corresponding example 29 of 
Terhardt's audio material; Terhardt, 1998). In the example, we have Ta = 5 ms and Tb = 4 ms. 
Resulting from the three sources, we find an accumulation of 4 simultaneous peaks at times 
20 ms, 40 ms, 60 ms, …. This corresponds exactly to the period of the virtual pitch of 20 ms 
and a fundamental frequency of 50 Hz. Hence, the approach based on autocorrelation 
provides a solution to the root phenomenon discussed at the beginning of this section. 
Technically, the energy of the corresponding oscillation is measured by the generalized 
coincidence function 𝐾𝐾(𝑐𝑐) (Ebeling 2008). 

Cariani and Delgutte (1996a, 1996b) have investigated the temporal discharge patterns of 
auditory nerve fibres in anesthetized cats.  In this study, periodic complex acoustic waveforms 
where presented that evoked pitches at their fundamental frequencies. The authors have 
calculated autocorrelations for all relevant spiking trains and they have demonstrated that the 
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maximal peaks for periods is corresponding to the pitch. These investigations give a direct 
underpinning of the thesis that with the help of autocorrelation the virtual pitch is calculated 
corresponding to the real auditory perception.  

 
The following Figure shows that the spectral pitch similarity found by Milne et al (2016) is 
very similar to the found generalized coincidence function defined by Ebeling 2008). Even 
when the agreement between the two curves is not complete, there is an extremely high 
correlation between the two models.  
 

      
Milne et al. (2016) 
 
 

       
Ebeling (2008) 
 
Figure A2. The upper curve is Milne's, the lower curve is Ebeling's. Milne is exploiting the partials directly, 
in the autocorrelation approach of neural spiking trains, the partials are not reflected directly. Instead 
of counting the fitting partials (in a frequency representation), the fitting of spikes is checked. For 
instance, for a vibration ratio of 3/2 (fifth) it can be said that the second partial of the upper tone agrees 
with the third partial of the lower tone. In the language of spike a related regularity appears: each third 
spike of the lower train coincides with each second spike of the upper train. 
 
Conceptually, both models have their advantages. Ebeling (2008) cites direct neurophysiolog-
ical evidence for the biological reality of autocorrelation mechanism (Cariani & Delgutte, 
1996a, 1996b; Langner, 2007). Milne's model has the advantage of a proper analysis of tonal 
similarities. Both models are conforming to Stumpf's idea of tonal fusion and both models 
conform to the findings of Josh H.  McDermott, Lehr, and Oxenham (2010) , suggesting to 
consider harmonicity as a foundation of musical preferences (consonance/dissonance). At the 
moment it is completely unclear whether one of the two models provides better fits to the 
available empirical data and what is their substantial difference concerning the empirical 
impact. Further, both models can be applied for modelling consonance/dissonance and both 
stress a biological rational for the dichotomy (in agreement with Bowling & Purves, 2015). 
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3 Template-based representations 

Template-based models of pitch and rhythm perception assume the existence of certain 
features which are crucial for understanding tonality and rhythm. For instance, the saliences 
of pitches perceived in chords may be determined using tone or chord templates. Mental 
representations are founded on the assumption that the harmonicity of complex tones and 
chords is dependent of the series of partials involved in harmonicity. The so-called root 
phenomenon means the existence of single notes that represent a whole chord.  According to 
Terhardt (1998), a musical chord evokes a virtual pitch when a set of spectral pitches matches 
to lower elements of a harmonic series. In other words, the root of a chord is characterized by 
the fact that one (or more) of its partials maximally resonate with the tones of the chord.  
 Terhardt (1982) formulated a simple algorithm for constructing the perceptual root of a 
chord. The idea is that a (potential) root tone of a chord conforms to the subharmonics of the 
tones of the chord. My presentation of the algorithm follows Parncutt (1988). The algorithm is 
based on five "root supports" corresponding to the intervals between a target tone and its first 
ten harmonics. This is shown in Figure A3 with C as target tone. It is evident that there are 
exactly five different intervals that can be derived from the harmonics: perfect unison, perfect 
fifth, major third, minor seventh, and major second. (Due to conventional theory, the intervals 
are collapsed into a single octave).  
 
 

 
 
Figure A3: Harmonic pitch analysis of a single target tone (C). 
 
From this Figure we can derive the emergence of the hierarchic model with an octave level 
(1:1), a fifth level (3:2 and 4:3) and possibly a third level (5:4 and  5:3). 
 
 
 

 
               root      1    2    3    4    5    6    7   8  9      
 
Figure A4: The first 9 partials of a given root tone (C in the present case). The intervals that are defined 
by the root and one of the first 9 partials roughly correspond to the perfect unison (not indicated in the 
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Figure), the perfect fifth (3/2), the major third (5/4), the minor seventh (7/4), and the major second 
(9/8).  
 
Terhardt's algorithm simply counts the number of tones of the chord that are supported by one 
of the harmonics of the root candidate; i.e. we consider all five root supports and check how 
many of these intervals connect our root candidate with one of the  tones of the chord. The 
candidate with the maximum number of supports is the winner of the competition. In Table 
A1 the number of supports is calculated for each of the 12 tones relative to the major triad. 
Intuitively, we can say that the number of supports is the higher the better the fit is between 
the chord and the harmonic series generated by the target tone (= root candidate). 
 
 
 

 
Table A1: Root candidates and their root supports for the major triad. The numbers in the last two lines 
are measures for root support as given by Terhardt (1982) and Parncutt's (1988) modification of it.  

Appendix 2: The Gauge Manifesto 
1. All musical forces are gauge forces 

2. Any gauge force is founded in a symmetry group and a gauge field 

3. Tones are modelled by vectors of a 2-dimensional spinor Hilbert space. Hence, the basic 
symmetry group is the group of unitary transformations (SU2 and their subgroups) 

4. The stationary Schrödinger-Pauli equation for spinors ψ(𝑐𝑐) is the fundamental equation 
under discussion. It has the following general form: 

 
(44) – 𝜕𝜕2ψ(𝑐𝑐)

𝜕𝜕𝑐𝑐2
+ 𝑴𝑴(𝑐𝑐) ∙ 𝜕𝜕ψ(𝑐𝑐)

𝜕𝜕𝑐𝑐
+ 𝑺𝑺(𝑐𝑐) ∙ ψ(𝑐𝑐) =  𝐸𝐸 ψ(𝑐𝑐).  

 
Hereby, the matrix function 𝑴𝑴(𝑐𝑐) describes the magnetic vector potential, and the matrix 
function 𝑺𝑺(𝑐𝑐) describes the scalar potentials such as gravity, harmonic oscillator potential, 
etc. 

5. A special case of the Schrödinger-Pauli equation is the free equation:  

(45) – 𝜕𝜕2ψ(𝑐𝑐)
𝜕𝜕𝑐𝑐2

= 𝐸𝐸 ψ(𝑐𝑐).  
 
The free equation corresponds to the general equation (44) with 𝑴𝑴(𝑐𝑐) = 0 and 𝑺𝑺(𝑐𝑐) = 0.  A 

simple solution is ψ(𝑐𝑐) = (cos 𝑐𝑐/2
sin𝑐𝑐/2), with 𝐸𝐸 = 1/4. 

6. All gauge forces result from gauge transformations.  

    Major Triad C E G 
root candidates C D♭ D E♭ E F G♭ G A♭ A B♭ B 
perfect unison 
perfect fifth 
major third 
minor seventh 
major second 
 
root supports  

C 
G 
- 
- 
- 
 
2 
3/2 

- 
- 
- 
- 
- 
 
0 
0 

- 
- 
- 
- 
E 
 
1 
1/5 

- 
- 
- 
- 
- 
 
0 
0 

E 
- 
- 
- 
- 
 
1 
1 

- 
C 
- 
- 
- 
 
1 
1/2 

- 
- 
- 
E 
- 
 
1 
1/4 

G 
- 
- 
- 
- 
 
1 
1 

- 
- 
- 
- 
- 
 
0 
0 

- 
E 
- 
G 
- 
 
1 
3/4 

- 
- 
- 
- 
- 
 
0 
0 

- 
- 
- 
- 
- 
 
0 
0 
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7. A gauge transformation is a representation of the fundamental symmetry group (or its 
subgroup). It is specified by a particular gauge field.  

8. The forces specified in the Hamiltonian by the matrix fields 𝑴𝑴(𝑐𝑐) and 𝑺𝑺(𝑐𝑐) are founded by 
a gauge transformation if it transforms all solutions of the stationary Schrödinger-Pauli 
equation (44) (with specified matrix functions 𝑴𝑴(𝑐𝑐) and 𝑺𝑺(𝑐𝑐)) into a force-free solution of 
(45).   

9. Deformation forces and phase forces are defined by particular gauge transformations. 
Deformation forces result from the rotation group SO2 and the gauge field 𝜃𝜃(𝑐𝑐) of rotation. 
Phase forces result from the unitary group U1 and the gauge field of phase shifts 𝛿𝛿(𝑐𝑐). The 
combination of both gauges is possible.  

10. Other symmetry groups relevant for tonal music are transposition symmetry (defines by 
the cyclic group) and particular modulation groups investigated by Mazzola.  

Appendix 3: Spatial Deformation Model and Spinor Phase model 
This part compares the spatial deformation model with the phase model. Note that the 𝜓𝜓-
functions differ for the spatial deformation model and the phase model. 

Let us consider first the spatial deformation model. We consider the following local gauge 
transformation, which converts the force-free solution of the Schrödinger equation into the 
deformed solution under the influence of gauge forces when we assume that 𝛾𝛾(𝑐𝑐) = 𝜃𝜃(𝑐𝑐) −
𝑐𝑐. We refer to our earlier formulation (26), which is repeated here: 
 

(46)  (ψ̃+(𝑐𝑐)
ψ̃−(𝑐𝑐)

)⟶ (ψ+(𝑐𝑐)
ψ−(𝑐𝑐)) = (cos 𝜃𝜃(𝑐𝑐) − sin 𝜃𝜃(𝑐𝑐)

sin 𝜃𝜃(𝑐𝑐) cos 𝜃𝜃(𝑋𝑋) )  (ψ̃+(𝑐𝑐)
ψ̃−(𝑐𝑐)

) = (
cos( 𝛾𝛾(𝑐𝑐)/2)
sin(𝛾𝛾(𝑐𝑐)/2) ) . 

 
Considering the (spinor) wave function ψ(𝑐𝑐) = ψ̃(𝛾𝛾(𝑐𝑐)), we assume the free Schrödinger 

equation (15) is valid, i.e. −𝜕𝜕2ψ(𝑐𝑐)
𝜕𝜕𝑐𝑐2

= 𝐸𝐸 ψ(𝑐𝑐). Differentiating the spinor ψ(𝑐𝑐) = (ψ+(𝑐𝑐)
ψ−(𝑐𝑐)) 

twice, we can derive that the spinor ψ(𝑐𝑐) satisfies the following differential equation: 
(47) −𝜕𝜕2ψ𝑖𝑖(𝑐𝑐)

𝜕𝜕𝑐𝑐2
+ 𝛾𝛾

′′(𝑐𝑐)
𝛾𝛾′(𝑐𝑐)  𝜕𝜕ψ𝑖𝑖(𝑐𝑐)

𝜕𝜕𝑐𝑐
− 𝛾𝛾′(𝑐𝑐)2 ψ𝑖𝑖(𝑐𝑐) = 0. 

 
This corresponds to the general form of the stationary Schrödinger-Pauli equation for spinors 
ψ(𝑐𝑐) discussed in Appendix 2:  
 
(48) [𝑇𝑇 + 𝑀𝑀 + 𝑈𝑈] ψ𝑠𝑠(𝑐𝑐) = 𝐸𝐸 ψ𝑠𝑠(𝑐𝑐), with 

a.  𝑇𝑇 = − 𝜕𝜕2

𝜕𝜕𝑐𝑐2
 

b.  𝑀𝑀 = 𝛾𝛾′′(𝑐𝑐)
𝛾𝛾′(𝑐𝑐)

𝜕𝜕
𝜕𝜕𝑐𝑐

 

c.  𝑈𝑈 = 𝐸𝐸 − 𝛾𝛾′(𝑐𝑐)2 . 
 
E is a constant referring to the eigenvalue of the Hamiltonian 𝐻𝐻(𝑐𝑐) = 𝑇𝑇(𝑐𝑐) + 𝑀𝑀(𝑐𝑐) + 𝑈𝑈(𝑐𝑐).  
As usual in physics, we call the operator T the operator of kinetic energy and we call the 
operator U  the operator of potential energy. The operator M  has been called magnetism in 
analogy to the physical examples. The details of the operators for M  and U  vary, of course, 
with the special form of the gauge field 𝜃𝜃(𝑐𝑐) (or 𝛾𝛾(𝑐𝑐)).   
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For the phase model, we consider the following local gauge function based on the unitary 
transformation 𝐸𝐸(0, 𝛿𝛿(𝑐𝑐), 0), which gives the following transformed wave function:18 

 

(49) ψ(𝑐𝑐) = 1
√2
(𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐 2⁄ )𝑒𝑒−𝑖𝑖𝑖𝑖(𝑐𝑐)

𝑐𝑐𝑠𝑠𝑘𝑘(𝑐𝑐 2⁄ )𝑒𝑒𝑖𝑖𝑖𝑖(𝑐𝑐) ) 

 
Again, we start with the free Schrödinger equation and differentiate the spinor ψ(𝑐𝑐) twice. 

Note that the two components of the spinor (ψ+(𝑐𝑐)
ψ−(𝑐𝑐))  satisfy the following differential 

equations:  
 

(50) a.  −𝜕𝜕2ψ+(𝑐𝑐)
𝜕𝜕𝑐𝑐2

− 2𝑠𝑠 (𝛿𝛿′(𝑐𝑐) 𝜕𝜕ψ+(𝑐𝑐)
𝜕𝜕𝑐𝑐

 + 1
2
𝛿𝛿′′(𝑐𝑐)ψ+(𝑐𝑐)) + 𝛿𝛿′(𝑐𝑐)2 ψ+(𝑐𝑐) = 0. 

b.  −𝜕𝜕2ψ−(𝑐𝑐)
𝜕𝜕𝑐𝑐2

+ 2𝑠𝑠 (𝛿𝛿′(𝑐𝑐) 𝜕𝜕ψ−(𝑐𝑐)
𝜕𝜕𝑐𝑐

+ 1
2
𝛿𝛿′′(𝑐𝑐)ψ−(𝑐𝑐)) + 𝛿𝛿′(𝑐𝑐)2 ψ−(𝑐𝑐) = 0. 

 
Note  the change of the signs for the middle term of the equations. In a compact form, another 
form of the Schrödinger-Pauli equation can be derived, where the Pauli matrix 𝜎𝜎3 = (1 0

0 −1) 
describe the mentioned alteration of sign:  

 

(51)   [𝑇𝑇 + 𝑀𝑀 + 𝑈𝑈] ψ𝑠𝑠(𝑐𝑐) = 𝐸𝐸 ψ𝑠𝑠(𝑐𝑐), with 

a. 𝑇𝑇 = − 𝜕𝜕2

𝜕𝜕𝑐𝑐2
 

b. 𝑀𝑀 = −2𝑠𝑠 ∙ (𝛿𝛿′(𝑐𝑐) 𝜕𝜕
𝜕𝜕𝑐𝑐

+ 1
2
𝛿𝛿′′(𝑐𝑐))𝜎𝜎3 

c. 𝑈𝑈 = 𝐸𝐸 + 𝛿𝛿′(𝑐𝑐)2 . 
 
In contrast to the deformation model, the operators of kinetic energy and the operator of 
magnetism can have imaginary expectation values. For the sum of all energies 𝐻𝐻 = 𝑇𝑇 + 𝑀𝑀 +
𝑈𝑈, however, we always has a real expectation value.  
 
For calculating the densities of the different energy operators, we have to consider the tonic 
operator which defines which element of the manifold space refers to the tonic. If the tonic 
refers to x=0, then the tonic spinor is the vector (1

0) and the tonic operator is the 

corresponding projector, i.e. (1 0
0 0). If the tonic refers to x=π/2  then the tonic spinor is 

1
√2
(1

1) and the tonic operator is 1
2
(1 1

1 1). For calculating the probability density that a tone 
collapses into a particular tonic t (with the corresponding tonic operator 𝕋𝕋) we have to 
consider the probability density 𝑝𝑝𝑐𝑐(𝑐𝑐) = |ψ(𝑐𝑐) ∙ 𝑐𝑐|2, which is equivalent with 𝜓𝜓(𝑐𝑐)∗ 𝕋𝕋 𝜓𝜓(𝑐𝑐). 
Since ψ is an Eigenfunktion of the Hamiltonian, the total energy density is proportional to the 
probability density 𝐸𝐸 ∙ 𝑝𝑝𝑐𝑐(𝑐𝑐). To make the correct reference to the tonics, we always have to 
compose the enrgy operators with the chosen tonic operator.  
Table A2 compares the energy operators for the deformation model and phase model. In all 
cases, the density functions are different because the 𝜓𝜓-functions differ for the two models. 
This is best visible for the function 𝐻𝐻(𝑐𝑐), which is proportional to the probability density. Of 
course, the probability densities are different for the two models. Further, note that for the 

                                                 
18 The treatment for the phase model with  𝐸𝐸(0, 0, 𝜏𝜏(𝑐𝑐))  is analogous and does not lead to different results. 
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deformation model, magnetism is a real-valued function whereas it is a function with purely 
imaginary values for the phase model.   
 
 Spatial deformation 

 
 𝜓𝜓(𝑐𝑐) 

=
1
√2

(
cos(𝛾𝛾(𝑐𝑐)/2)
𝑐𝑐𝑠𝑠𝑘𝑘(𝛾𝛾(𝑐𝑐)/2)) 

Spinor phase model 
 

𝜓𝜓(𝑐𝑐)  

=
1
√2

(𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐 2⁄ )𝑒𝑒−𝑖𝑖𝑖𝑖(𝑐𝑐)

𝑐𝑐𝑠𝑠𝑘𝑘(𝑐𝑐 2⁄ )𝑒𝑒𝑖𝑖𝑖𝑖(𝑐𝑐) ) 

𝑇𝑇(𝑐𝑐) 𝜓𝜓(𝑐𝑐)∗ ∙ −
𝜕𝜕2

𝜕𝜕𝑐𝑐2
∙ 𝕋𝕋 𝜓𝜓(𝑐𝑐)  𝜓𝜓(𝑐𝑐)∗ ∙ −

𝜕𝜕2

𝜕𝜕𝑐𝑐2
∙ 𝕋𝕋 𝜓𝜓(𝑐𝑐)  

 
𝑀𝑀(𝑐𝑐) 𝜓𝜓(𝑐𝑐)∗ ∙

𝛾𝛾′′(𝑐𝑐)
𝛾𝛾′(𝑐𝑐) ∙

𝛿𝛿
𝛿𝛿𝑐𝑐

∙ 𝕋𝕋 𝜓𝜓(𝑐𝑐) −2𝑠𝑠 ∙ 𝜓𝜓(𝑐𝑐)∗ ∙  𝛿𝛿′(𝑐𝑐) ∙ 𝜎𝜎3
𝑖𝑖
𝑖𝑖𝑐𝑐

  ∙ 𝕋𝕋 𝜓𝜓(𝑐𝑐)  

𝑈𝑈(𝑐𝑐) 𝜓𝜓(𝑐𝑐)∗ ∙ (𝐸𝐸 − 𝛾𝛾′(𝑐𝑐)2) ∙ 𝕋𝕋 𝜓𝜓(𝑐𝑐) 𝜓𝜓(𝑐𝑐)∗ ∙ (𝐸𝐸 + 𝛿𝛿′(𝑐𝑐)2 − 𝑠𝑠𝛿𝛿′′(𝑐𝑐)𝜎𝜎3) ∙ 𝕋𝕋 𝜓𝜓(𝑐𝑐) 

𝐻𝐻(𝑐𝑐) 𝐸𝐸  𝜓𝜓(𝑐𝑐)∗ ∙ 𝕋𝕋 𝜓𝜓(𝑐𝑐)  𝐸𝐸 𝜓𝜓(𝑐𝑐)∗ ∙ 𝕋𝕋 𝜓𝜓(𝑐𝑐) 

 with  𝐸𝐸 = 1
4
   in both cases 

 
Table A2: Kinetic, magnetic and potential energy for spatial deformation model and phase model. 
 
In the main part of this article, we discuss the shape of the energy densities in detail.  

Appendix 4: Representation theory of SU(2) 
In general, the group SU(n) is the group of n×n unitary complex matrices with 
determinant 1. For the special case n= 2, we have claimed in Formula  (8) that each unitary 

transformation with determinant 1 can be represented by the matrix  (𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑒𝑒−𝑖𝑖𝑖𝑖 −𝑐𝑐𝑠𝑠𝑘𝑘 𝜃𝜃𝑒𝑒𝑖𝑖𝑖𝑖
𝑐𝑐𝑠𝑠𝑘𝑘 𝜃𝜃𝑒𝑒−𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑒𝑒𝑖𝑖𝑖𝑖

)  

with real parameters 𝜃𝜃, 𝛿𝛿, and 𝜏𝜏.  
For generating this matrix, we consider the three Pauli matrices. 
 
(52) 𝜎𝜎1 =  (0 1

1 0),  𝜎𝜎2 =  (0 −𝑠𝑠
𝑠𝑠 0 ),  𝜎𝜎3 =  (1 0

0 −1). 

 
Is it possibly to construct the matrix by the following generating expression: 
 
(53) 𝑆𝑆𝑈𝑈(2) =  ∏ 𝑒𝑒−

𝑖𝑖
2 𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗 𝜎𝜎𝑗𝑗3

𝑗𝑗=1  , with 𝑝𝑝𝑎𝑎𝑘𝑘1 =  𝛿𝛿, 𝑝𝑝𝑎𝑎𝑘𝑘2 =  𝜃𝜃, 𝑝𝑝𝑎𝑎𝑘𝑘3= 𝜏𝜏.  

 
For example, the middle term of the product corresponds to the matrix (𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 −𝑐𝑐𝑠𝑠𝑘𝑘 𝜃𝜃

𝑐𝑐𝑠𝑠𝑘𝑘 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 )  
describing a spatial rotation, whereas the first and the last term correspond to phase shifting 
matrices.  
In elementary particle physics, SU(2) is the symmetry group of weak interaction. It describes 
fermions (electron, neutrino) that act as pairs. The interaction consists in the exchange of 
three kinds of bosons, called Z, 𝑊𝑊 +and 𝑊𝑊 −. The ensemble of Z bosons is called neutral 
current, and the W bosons build the charged current.  
The corresponding latter operators are given as follows: 
 
(54) a. 𝜎𝜎+ =  1

2
(𝜎𝜎1 + 𝑠𝑠 𝜎𝜎2) , for  𝑊𝑊+ 



 41 

b. 𝜎𝜎− =  1
2

(𝜎𝜎1 − 𝑠𝑠 𝜎𝜎2) , for  𝑊𝑊− 

c. 𝜎𝜎3,  for 𝑍𝑍 / 𝑊𝑊0 
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