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1   Local and distributed representations 
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The difference 
 

(A)  Local representation: Each neuron represents a single concept and 
each concept is represented by a single neuron 

 

(B)   Distributed representation: Concepts are represented by patterns of 
activity over a collection of neurons. 

- Each concept (e.g., an entity, token, or value) is represented by a 
pattern of neural activity in which more than one neuron is active. 

- Each neuron participates in the representation of more than one 
concept. 

 

In a distributed representation one cannot interpret the meaning of 
activity on a single neuron in isolation: the meaning of activity on any 
particular neuron is dependent on the activity in other neurons.  



 5 

Advantages of distributed representation 
 

1. Representational efficiency: distributed representations form a more 
efficient code than localist representations, provided that only a few 
concepts are to be represented at once.  
- A localist representation using n neurons can represent just n 
different entities.  
- A distributed representation using n binary neurons can represent up 
to 2n  different entities 

 

2. Mapping efficiency: a micro-feature-based distributed representation 
often allows a simple mapping (that uses few connections or weights) 
to solve a task. The point is that the relevant features may be encoded 
as single units (or small groups of units) for solving the task. 
Example: classify color shapes as to whether or not they are yellow. 
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Advantages of distributed representation, cont.  
 

3. Continuity (in the mathematical sense): representing concepts in 
continuous vector spaces allows powerful gradient-based learning 
techniques such as backpropagation to be applied to many problems, 
including ones that might otherwise be seen as discrete symbolic 
problems. 

 

4. Soft capacity limits and graceful degradation: distributed represent-
ations typically have soft limits on how many concepts can be 
represented simultaneously before ghosting or interference becomes a 
serious problem. Also, the performance of neural networks using 
distributed representations tends to degrade gracefully in response to 
damage to the network or noise added to activations.  



 7 

Advantage of local representations 
 
• Local representations are far simpler to understand, implement, 

interpret, and work with.  
 

• If distributed representations do not provide significant advantages 
for a particular application, it may be more appropriate to use a local 
representation. 

 

• This may be the case in many cognitive modeling applications. The 
local/distributed distinction is not intrinsic to a network. It relates to 
an observer-dependent property. It's your decision to give a localist or 
distributed interpretation of the network's units.  
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Problem: Representation of  dots in 2D  
 

 
 
 
 
 
 

(a)      (b) 
 

(a) A simple way of using two groups of binary units to encode the 
position of a point in a two dimensional space. The active units in the 
X and Y groups represent the x- and y-coordinates.  

(b) However, when two points must be encoded, it is impossible to tell 
which x-coordinate goes with which y-coordinate (binding problem). 
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Conjunctive encoding 
 
One solution to the binding problem is the use of local representations: 
one unit for each possible combination of X and Y values. This can be 
realized by the outer product: (x ⊗ y)ij = xi ⋅yj 
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Conjunctive encoding, cont. 
 
For representing two dots the sum of the two outer products has to be 
calculated: (x1 ⊗ y1) ⊕(x2 ⊗ y2) 
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Binding vs. accuracy 
 
• This kind of local encoding is very expensive: N⋅N nodes 
• It is very inefficient if only a very small fraction of the possible 

features are present at once. The information conveyed by a unit is 
very small (-p⋅log p-(1-p) ⋅log(1-p); 1 bit if p=1/2; about 0.1 if 
p=1/64)  

• The accuracy is very low because the system may fail if only one unit 
fails.  

• It would therefore be more efficient to use a distributed encoding in 
which a larger fraction of the units were active at any moment. 
 

 Coarse coding 
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2    Coarse Coding  
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 The basic idea 

 
• Coarse coding requires that a property be encoded by a set of 

detectors 
 

• Usually the detectors will have 
overlapping sensitivities 

 

• Many examples of this type of coding 
are found in the human visual system 

 

• Good example: Colour detection 
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 Two coding schemes for detecting spatial locations 

 
 

Note how it is possible to obtain fine spatial resolution by combining 
the responses of poor spatial detectors 
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Coarse coding of 2D positions 
 
Each neuron is 
represented by a circle 
showing its receptive 
field. Neurons that 
respond to the point X 
have dark grey 
receptive fields. 
Neurons that respond to 
some point along the 
solid line have bold 
receptive fields. 
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Coding direction of visual motion 
 
Direction of visual motion is believed to be encoded in the medial 
temporal (MT) visual area by the responses of a large number of cells 
with bell-shaped tuning to 
direction, as illustrated in 
the Figure (Maunsell & 
Van Essen, 1983).  
In this illustration, 16  
idealized tuning curves are 
shown corresponding to 16 
direction-tuned neurons 
(including neuron 10) 
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 Coarse coding and translation invariance 
 

 
Build useful structure into the net: (1) receptive field spanning three 
neurons (2) grouping of links with identical values 

1 2 3 4 5 6 7
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Idea of the solution 
 

• The guiding idea in solving the translation invariance problem is to 
build as much useful (innate?) structure into the network as possible 

 

• The idea of receptive fields: the hidden units are connected to a 
limited number of neurons on the first level 

 

• The spatial relation between the hidden units and the corresponding 
first level units are reflected in similar weights 

 

• Try to understand the solution based on these basic architectural 
assumptions by examining the actual weights and drawing the 
network! (tlearn exercise 5) 
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3  Pollack's recursive auto-associative memory 
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The basic idea 
   
• Technique for encoding recursive data structures (lists and trees) as 

distributed numerical vectors, e.g. [0.33, -0.87, 0.13, -0.43] 
• Uses feedforward network architecture, backpropagation to encode 

arbitrary-depth trees with fixed branching factor k into distributed 
representations of length n  

• Network trained by auto-association  
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Example 
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 Example cont. 
 
 

• Auto-association makes it 
possible to use the network both 
for encoding and decoding 

 

• Recursive encoding: 
A B → [A B]     C D → [C D] 
[A B]  [C D] → [A B C D] 

 

• Recursive decoding 
[A B C D] → [A B]  [C D] 
[A B] → A B      [C D] → C D 
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RAAM and Composition 
 

• Binary RAAM realizes a function raam2: An × An → An , where An 
designates the activation vectors of length n.  

 

• Whereas in symbolic systems concatenative composition plays the 
main role in constructing structured symbolic representations, in PDP 
the function raamk(x1, …,xk) plays a similar role (functional 
composition) 

 

• cf. Tim van Gelder (1990): Compositionality: A connectionist 
variation on a classical theme. Cognitive Science 14. 

 

• Encoding lists in PDP 
abcd: raam2(d, raam2(c, raam2(b, raam2(a, nil)))) 
the atoms a, b, c, d are normally encoded as local representations. 
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Importance of RAAM 
 

• Following the publication of (Pollack 1990), RAAM gained 
widespread popularity as a model of linguistic structure 

• Some researchers (Blank, Meeden, and Marshall 1991) found it an 
attractive way of “closing the gap” between the symbolic and sub-
symbolic paradigms in cognitive science 

• Others (Van Gelder 1990) saw in RAAM a direct and simple 
refutation of the traditional cognitive scientists’ counterattack against 
connectionism 

• Chalmers (1990) went as far as to show how traditional syntactic 
operations like transformations could be performed directly on 
RAAM representations 
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4  Syntactic transformations on distributed 
representations (Chalmers 1990) 
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The aim 
 

• Demonstrating that the distributed representations formed by RAAM 
are well-suited for structure-sensitive operations (transformations). 
Not only is compositional structure encoded implicitly in a pattern of 
activation, but this implicit structure can be utilized by the familiar 
connectionist devices of feedforward/ backpropagation in a 
meaningful way. 

 

• Demonstrating that connectionism offers the opportunity to operate 
on compositional representations holistically, without first proceeding 
through the step of extracting certain substructures. 

 

• Demonstrating that connectionism is much more than a matter of 
implementation 
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The procedure 

 
1. Training the RAAM for encoding the syntactic structures of 

sentences such as John loves Michael or Michael is loved by John. 
(125 sentences were uses of active form and 125 of passive form)   

 

2. Testing the RAAM 
 

3. Training the transformation network 
 

4. Testing the transformation network 
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Local representation of terminal elements 
 

 
 

 
 
 
 
 
 
 
  

Categorical  Particular  spare
Information   words        units 

NIL is used to stay with 
Pollack's triadic format 
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 Training the RAAM 
 
• The initial corpus of 80 sentences, 40 

of each type, was used to train the 
RAAM (architecture: 39×13×39) 

• There were 160 cycles of the 
network per epoch, one for each of 
the original sentences and three for each of the passivized sentences 
(corresponding to the three internal nodes of the tree) 

• The initial learning rate was 0.1; this was lowered to 0.025 by the end 
of the training procedure. A momentum rate of 0.9 was used 

• The network was trained for 6400 epochs, by which time all but 20 
output units (out of 6240 in all) had an error of less than 0.05. The 
maximum error on any output unit was 0.12. 
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Testing the RAAM 
 
• Test for terminal elements: an vector x is deemed non-terminal iff 

− More than 2 units had an activation between 0.15 and 0.85, or  
− either of the two spare units had activation greater than 0.5, or 
− more than one categorical part unit had activation greater than 0.5 

• As an initial test, the 80 sentences in the training corpus were 
recursively encoded, and then decoded using the above method. Un-
surprisingly, all 80 were decoded back to the original sentence 

• As a test of generalization, 80 new sentences from the testing corpus 
were encoded and decoded in the same fashion. All but 13 of these 
sentences decoded back to the original sentence. Of the 13 mistakes, 
only one was decoded to an incorrect sentence structure; the other 12 
all had one incorrect word within a correct sentence structure. 
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The transformation network 

 
• Chalmers trained a feedforward trans-

formation network using the first 80 
compressed representations, appropriately 
paired as input and target patterns (13 to 
29 hidden units) 

 

• The learning = 0.1, momentum = 0.9. The 
network was trained for 1500 epochs, 
consisting of 40 cycles each. At the end of 
this time, only one output unit (out of 
1560 per epoch) had an error greater than 
0.05.  
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Testing the transformation network 
 
• As an initial test, the 40 “active” sentences from the training corpus 

were encoded using RAAM, and fed to the transformation network, 
yielding a new distributed representation. These representations were 
decoded using RAAM. All 40 of these decoded to the correct passive 
sentence. 

 

• As a test of generalization, 40 new input/output pairs of sentences 
were used. Out of these 40, 26 decoded to the correct passivized 
sentence; of the remaining 14, one had incorrect sentence structure, 
and the other 13 had a single incorrect word.  
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Conclusions 
 
• The network has developed a high degree of sensitivity to the 

structure encoded implicitly in the distributed representations 
 

• The representations support systematic processing. Explicit 
constituent structure is not needed for systematicity; implicit structure 
is enough 

 

• It is impossible to describe the operation of this system, at any level 
of functional abstraction, as an implementation of a pure symbolic 
process. The compositional representations used here are not operated 
on reductionistically, by splitting into their constituent parts and then 
processing. Rather, the operations are direct and holistic. 
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 5   General conclusions 
 

• Distributed representations have many advantages  
− representational efficiency 
− use of gradient-based learning techniques 
− graceful degeneration 
− solving the problem of translation invariance 

• Representations built by RAAM can have arbitrarily complex 
syntactic structure. The procedure RAAM works fairly well, however 
some limitations should be mentioned: 
− difficulties with the decision whether an output pattern 

corresponds to a terminal element or requires a further cycle of 
decompression (for RAAM networks with more than 5 levels) 

− Capacity limitations for autoassociation with more than 5 levels 
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• The recursion in the RAAM procedure needs an external controller; 
i.e. the procedure is not completely expressed within the framework 
of neural networks. The user/controller of the procedure determines 
what kind of structure is encoded. 

•  Representations have complex, distributed microstructure containing 
much more information than symbolic representations. This is helpful 
not only for describing processing but also for finding out interesting 
generalizations (cf. Chalmers 1990) 

• Within RAAM, syntactic operations can be treated as holistic 
structure-sensitive operations. Syntactic transformations are handled 
very easily by pure symbolic systems. However, the real potential of 
holistic operations arises because of a special property of 
connectionist representations: they can carry their own content, or at 
least part of it (Chalmers 1990). 


