
Neural Nets and Symbolic Reasoning  
Learning 

 



 2 

 

Outline 
 

 Learning weights for single neurons 
- Hebbian rule 
- Generalized Hebbian rule 

 - The perceptron training rule 
- The delta rule 

 

 Multilayer networks 
- Various types of network architecture 
 - A network for XOR 

 - Multilayer networks and backpropagation 
  



 3 

 1  Learning weights for single neurons 
 

 
 



 4 

The Hebbian rule 
 

When an axon of cell A is near enough to excite a cell B and repeatedly 
or persistently takes part in firing it, some growth process or metabolic 
change takes place in one or both cells such that A's efficiency as one of 
the cells firing B, is increased. (Hebb 1949, p. 62) 
 

 Simultaneous activation of an input s and output r of a cell increases 
the corresponding weight w. (Unsupervised Learning!) 

 

S = {0, 1}  possible activations  
wn+1 = wn + ∆w 
 

            η  if s=r=1  
∆w   =   
            0  otherwise   
 
η is a positive constant called learning rate 



 5 

 Example: inclusive OR  
 

Initial state: θ = 0.5; w1 = w2 = 0 
 
s1  s2 s3 r  
0 0 0 0 
1 0 0 0 
0 1 0 0 
1 1 0 0 
 
Teaching: η = 0.3 
 
s1  s2 s3 r w1 w2 
0 0 0 0 0 0 
1 0 1 1 0.3 0 
0 1 1 1 0.3 0.3 
1 1 1 1 0.6 0.6 

Final state 
θ = 0.5; w1 = w2 = 0.6 
 

s1  s2 s3 r 
0 0 0 0 
1 0 0 1 
0 1 0 1 
1 1 0 1 



 6 

Plasticity and Stability 
 
• Plasticity: ability of adaptation  
• Stability: ability to preserve the learned information 
• The two factors are (often) conflicting.  
 

In the case under discussion, the system is of low plasticity. After some 
learning steps the system is saturated: The weights get maximum value 
and cannot further be increased - no way to learn new functions. 
 

With regard to stability  the system works well if the learning constant  
η is not too big and learning is stopped at some point.  
Effect of over-learning: weights continue to change though the system 
has already learned the required function).  Information can be lost! 
(check it out by teaching the AND function) 



 7 

The generalized Hebbian rule 
 

∆w =  η⋅s⋅r   (bold symbols for vectors!) 

 

• S = {0, 1} ⇒  simple Hebbian rule 
• S = {-1, 1}⇒  generalized rule; negative learning   
 

Plasticity: if we take negative activations into account, then we find 
negative learning, that means negative correlations ate likewise 
reinforced (decreasing the corresponding weight factor). This has 
positive effects for plasticity: New functions can be learned. (example: 
Learn first the AND function and then the OR function) 
Stability: Over-learning still possible but without such catastrophic 
consequences as in the case before (check it out by teaching the AND 
function). 



 8 

The perceptron training rule  
 
∆w =  η⋅(t-r)⋅s t target output (teacher), r generated output, s input 

S discrete (e.g. S = {-1, 1})  
   
The corresponding learning procedure can be proven to converge within 
a finite number of applications of the training rule to a weight vector that 
correctly classifies all training examples, provided the training examples 
are linearly separable and provided a sufficiently small η is used.  
 
If the data are not linearly separable, convergence is not guaranteed! 
(check it out by using the exclusive OR example) 



 9 

Example: inclusive OR 
 
Initial state: θ = 0.5; w1 = w2 = 0 
 

s1  s2 r t (teacher)  
0 0 0 0 
1 0 0 1 
0 1 0 1 
1 1 0 1 
 

Teaching 
s1  s2 r t w1 w2 
0 0 0 0 0 0 
1 0 0 1 0.3 0 
0 1 0 1 0.3 0.3 
1 1 1 1 0.3 0.3 
0 0 0 0 0.3 0.3 
1 0 0 1 0.6 0.3 
0 1 0 1 0.6 0.6 
1 1 1 1 0.6 0.6 
0 0 0 0 0.6 0.6 
1 0 1 1 0.6 0.6 
0 1 1 1 0.6 0.6 
1 1 1 1 0.6 0.6 

Plasticity: optimal (perceptron 
convergence theorem!) 
 
Stability: Over-learning not 
possible. Learning stops when 
the differences between 
wanted and generated output 
are zero. 



 10

 The delta rule  
 
The delta rule converges 
toward a best-fit 
approximation to the 
target concept if the 
training examples are not 
linearly separable. 
 
Key idea: gradient 
descent as downward 
path on the error surface 
to search the find weight 
vector that best fits the 
target concept. 



 11

The delta rule, cont. 
 
Defining the error    
E(w) = ½ ∑d∈D (td − rd)2  
 

Untresholded perceptron 
r(s) = w ⋅ s   (i.e., r = ∑j wj sj)  
 

Gradient of E 

],...,,[)(
10 nw

E
w
E

w
EwE

∂
∂

∂
∂

∂
∂

=∇  

 

Training rule  
wn+1 = wn + ∆w 
∆w = −η⋅∇E(w)          ∆w = η ∑d∈D (td − rd) sd 

Difference to the perceptron training rule: summation over all learning items 

Calculating ∇E(w)

))((

)()(

)(
2
1

)(
2
1

2

2

id
Dd

dd

j jdjd
iDd

dd

Dd
dd

i

d
Dd

d
ii

srt

swt
w

rt

rt
w

rt
ww

E

−−=

⋅−
∂
∂

−=

−
∂
∂

=

−
∂
∂

=
∂
∂

∑

∑∑

∑

∑

∈

∈

∈

∈



 12

The delta rule for tresholded perceptrons 
 
 

Tresholded perceptron 
r(s) = f(w ⋅ s)   (i.e., r = f(∑j wj sj) ) 
 

with sigmoid function 
f(net) =  1/(1+exp(-net/T) 
 

first derivation of the sigmoid function 
f ' (net)= f (net)⋅(1-f(net)) 
 

Use the gradient method with E(w) = ½ ∑d∈D (td − rd)2 and  calculate the 
corresponding learning rule: 
∆w = ?? 



 13

The delta rule for tresholded perceptrons 
 
 
 
 
 
 
 
 
 
 
 
∆w  = η ∑d∈D (td − rd)⋅f '(net)⋅sd  

  =  η ∑d∈D (td − rd)⋅rd⋅(1-rd)⋅sd 

))(')((

))(()(

)(
2
1

)(
2
1

2

2

id
Dd

dd

j jdjd
iDd

dd

Dd
dd

i

d
Dd

d
ii

snetfrt

swft
w

rt

rt
w

rt
ww

E

⋅−−=

⋅−
∂
∂

−=

−
∂
∂

=

−
∂
∂

=
∂
∂

∑

∑∑

∑

∑

∈

∈

∈

∈



 14

Stochastic approximation to gradient descent 
 
Whereas the gradient descent training rule ∆w = η ∑d∈D (td − rd) sd computes weights 
after summing over all the training examples in D, the stochastic approximation 
method approximates the gradient descend by updating weights incrementally, 
following the calculation of the error for each individual example. 
 

Defining the error   (with regard to an individual training example d) 
Ed(w) = ½ (td − rd)2  
 

Training rule  
∆wd = −η⋅∇Ed(w);  ∆wd = η (td − rd)⋅rd⋅(1-rd)⋅sd 
 

Advantages 
• Faster convergence to a local minimum 
• With appropriate learning rate η there is a good chance also to find 

the global minimum (if there are multiple local minima) 



 15

2  Multilayer networks 
 

 

 



 16

Various types of network architecture 
 

 
 
(a) A fully recurrent network 
(b) A three layer feedforward network 
(c) A complex network consisting of several modules. Arrows indicate 

direction and flow of excitation or inhabitation 



 17

The importance of multilayer networks 
 

• Single perceptrons can only express 
linear decision surfaces 

• Nonlinear activation functions are 
important: multiple layers of 
cascaded linear units still produce 
only linear functions. 

• Importance of the sigmoid function: a unit very much like a 
perceptron (at least for small T), but based on a smoothed, 
differentiable threshold function. 

Recognizing 
connectedness



 18

 A network for XOR 
 

Feedforward network with two 
hidden units and an output 
union. 
 

The layer of hidden (internal) 
units form "internal representati-
ons" of the input pattern.  
 

How to adjust the weights for 
the hidden units? 
 

Backpropagation 



 19

Backpropagation algorithm  
 

Given a feedforward net containing two layers of sigmoid units. For each 
<s, t> in training examples, do the following: 
Propagate the input forward through the network: 
1. Input the instance s to the network and compute the output rx of every 

unit x in the network.  
Propagate the errors back through the network: 
2. For each network output unit i, calculate its error term δi  

δi  ← ri(1-ri)(ti-ri) 
3. For each hidden unit i, calculate each error term δ 

δi  ← ri(1-ri)Σk∈outputs(wki δk) 
4. Update each network weight wij ← wij + ∆wij 

where ∆wij = η δi sij  



 20

Adding momentum 
 

Backpropagation is a widely used algorithm, and many variations have 
been developed. The most common is to make the weight update on the 
nth iteration dependent on the update that occurred during the (n-1)th 
iteration.  

∆wij (n) = η δi sij + α ∆wij (n-1) 
The constant 0≤α≤1 is called 
momentum.       
The momentum term has the same effect as 
adding momentum to a ball rolling down the 
error surface. This can have the effect of 
gradually increasing the step size in search 
regions where the gradient in unchanging, or of overcoming small local minima.      



 21

        Derivation of the backpropagation rule 
 

 
 
Deriving the stochastic gradient 
descend rule  
 

ij

d
ij w

Ew
∂
∂

−=∆ η , where  Ed(w) = ½ Σk∈outputs(tk − rk)2 

Skip index d in the following and use ri = f(neti); neti = ∑k wik sik 

i

ijiij
iij

i

iij
ij

net
E

ss
net
E

w
net

net
E

w
Ew

∂
∂

−=

⋅⋅=⋅
∂
∂

−=
∂
∂
⋅

∂
∂

−=
∂
∂

−=∆

i  where δ

δηηηη

 



 22

First case: output units 
 

 

 
 
ri = f(neti), f sigmoid function 
neti = ∑k wik sik 

 

)1()()()()(2/1 2
i iiiiii

i
iik

outputk
k

ii

rrrtnetr
net

rtrt
netnet

E
−⋅⋅−=

∂
∂

⋅−=−
∂
∂

−=
∂
∂

−= ∑
∈

δ  

That is exactly what we used in step 2 of the back propagation algorithm: 
δi  ← ri(1-ri)(ti-ri) 

 



 23

Second case: hidden units 
 

 
 
neti can influence E (via the network outputs) only through the units in downstream(i)! 

)1(

 

)()(

)()(
i

i
idownstreamk

ikik
i

i

idownstreamk i

k
k

idownstreamk i

k
k

i

k

idownstreamk ki

rrw
net
r

r
net

net
net

net
net

net
E

net
E

−=
∂
∂

∂
∂

=

∂
∂

=
∂
∂

∂
∂

= −
∂
∂

−=

∑∑

∑∑

∈∈

∈∈

δδ

δδ
 

That is exactly what we used in step 3 of the back propagation algorithm: 
δi  ← ri(1-ri)Σk∈downstream(i) (wki δk) 

ri = f(neti) 
netk  = Σj wkj rj



 24

Representational power of feedforward networks 
 

• Boolean functions: Every Boolean function can be represented 
exactly by some network with two layers of units. The number of 
hidden units may grow exponentially in the worst case with the 
number of network inputs. 

• Continuous functions: Every bounded continuous function can be 
approximated with arbitrarily small error by a network with two 
layers of units. 

• Arbitrary functions: Any function can be approximated to 
arbitrary accuracy by  network with three layers of units. (for 
details see Mitchell's "machine learning", p. 105. 


