
Neural Nets and Symbolic Reasoning

Structure in Time: Recurrent Networks

 2

Outline

 The role of time in cognition

 Finding structure in time: Elman's simple recurrent networks

 Learning to count without a counter

 General conclusions

 3

1 The role of time in cognition

 4

Why time is important

• Time is clearly important in cognition. It is inextricably bound up

with many behaviors which express themselves as temporal

sequences.

• How to deal with such basic problems as goal-directed behavior,

planning, or causation without some way of representing time?

• The example of sentence processing

(A) Sentences are processed sequentially in time

(B) Sentences exhibit long-distance dependencies (Agreement

phenomena; binding phenomena)

 5

Why time is a problem

• The parallel nature of neural processing seems to be ad odds with the

serial nature of time

• However, even within traditional (serial) frameworks, the

representation of serial order presents challenges. For example, in

models of motor activity an important issue is whether the action plan

is a literal specification of the output sequence, or whether the plan

represents serial order in a more abstract manner (e.g., Lashley, 1951)

• Research in natural language parsing suggests that the problem with

long-distance dependencies is not trivially solved if language is

processed sequentially (e.g., Frazier & Fodor; 1978; Marcus, 1980).

 6

Approaching time in PDP

• Standard feedforward networks? At a given point in time such a

network has only access to the LTM (weights) and to the patterns

generated by its current input. No access to previous inputs.

• RAAM? They are able to retain the constituent structure of a

sentence. The successive coding in terms of hidden unit patterns

establishes a kind of STM for already processed parts of a sentence.

However, the copying of pattern is in space, not really in time.

(Parallels time: giving time a spatial representation)

• Representing time by the effect it has on processing and not as an

additional dimension of the input (Recurrent networks)

 7

Two architectures

Jordan (1986) added

recurrent connections for

copying the pattern on the

output units to the state units.

Elman (1990) modified this

account and copied the

content of the hidden units

back to the context units.

(state = context).

Sending the pattern of the hidden unit back to the network, makes the

network's activity sensitive to its own construal of the immediately

preceding input (Also in RAAM: the copy come from the hidden unit).

 8

2 Finding structure in time:

Elman's simple recurrent networks

 9

 Importance of the paper

COGNITIVE SCIENCE, 14, 179-211 (1990).

Finding Structure in Time
JEFFREY L. ELMAN
University of California, San Diego

The approach described here employs a

simple architecture but is surprisingly power-

ful. The are several points worth highlighting:

• Some problems change their nature when

expressed as temporal events: a sequential version of the XOR

• The time-varying error signal as a clue to temporal structure

• There is no separate representation of time

• Memory is neither passive nor a separate subsystem.

 10

 The basic idea

1. The input units receive the first input

2. Both the input units and context units

activate the hidden units

3. - The hidden units feed forward to

activate the output units

- The hidden units also feed back to

activate the context units (copying the content of the hidden units)

In this time cycle, there is a learning phase: The output is compared with

a teacher input and backpropagation of error is used to incrementally

adjust connection strength. Recurrent connections are fixed at 1.0 and are

not subject to adjustment.

 11

Internal representation of time

• The hidden units develop internal representations for the input

patterns

• The context units remember the previous internal state

• The hidden units: Mapping external input and previous internal state

to some desired output

• The hidden units must accomplish this mapping. At the same time

they develop representations which are useful encodings of the

temporal properties of the sequential input

• Thus, the internal representations that develop are sensitive to

temporal context; the effect of time is implicit in these internal states.

 12

fixed weights

w = 1

Exclusive OR

Standard XOR:

input vector: (00, 11, 01, 10)

output vector: (0, 0, 1, 1)

Serial version:

input: 1 0 1 0 0 0 0 1 1 1 1 0 1 0 1 . . .

output: 0 1 0 0 0 0 1 1 1 1 0 1 0 1 ? . . .

chance:♦♦♦ ♦ ♦♦ ♦♦♦ ♦♦♦ ♦♦
 1 2 3 4 5 6 7 8 9 101112 1314

 13

Error plot

Graph of root mean squared error over 12 consecutive inputs in

sequential XOR task. Data points are averaged over 1200 trials

 14

Understanding the solution

• simultaneous version: the two hidden nodes are 0 if the two input

elements are the same, otherwise the two hidden nodes are different

• sequential version: one of the two hidden units is highly activated

when the input sequence is a series of identical elements (all 1s or

0s), whereas the other unit is highly activated when the input

elements alternate.

• Hence, the solution to the sequential version of the XOR problem

involved detection of state changes (frequency-sensitive hidden units)

• Casting the XOR problem in temporal terms led to a different

solution than is typically obtained in feed-forward networks.

Some problems change their nature when expressed as temporal events

 15

Structure in letter sequences: Discovering the notion word

• What is a word?

− Defined as a unit on a certain level of representation

− The commitment to such distinct levels is often problematic

− Languages differ dramatically in what they treat as words

− Even in English no consistently definable distinction between

words (apple), compounds (apple pie), phrases (Library of
Congress)

• Computational mechanism to detect the boundaries between

words?

− Phonetic and prosodic structure is not enough

− Manyyearsagoaboyandgirl …

 16

Cues for word boundaries

Manyyearsagoaboyandgirl…

Many years ago a boy and girl …

• One can ask whether the notion “word” (or something which maps on

to this concept) could emerge as a consequence of learning the

sequential structure of letter sequences which form words and

sentences (but in which word boundaries are not marked).

• Is there information in the signal which could serve as a cue as to the

boundaries of linguistic units which must be learned?

• Simulation that shows that a simple recurrent network can extract

relevant probabilistic information (statistics of co-occurrence) that

correlates with words. No semantics is required at this point.

 17

Simulation study

1. Using a lexicon of 15 words, 200

sentences were generated of varying

length (4-9 words)

2. A big string with 4963 letters were

generated from that. Each letter was

converted into a 5 bit random vector

3. A SRN with 5 input units, 20 hidden

units, 5 output units, and 20 context

units was trained on 10 complete

presentations of the sequence.

4. Errors for letter prediction were

calculated.

 18

Error diagram

Graph of root mean squared error in letter-in-word prediction task. The
sequences bounded by high error correlate with words.

 19

Conclusions

• The time-varying error signal can be used as a clue to temporal

structure. Temporal sequences are not always uniformly structured,

nor uniformly predictable

• The error signal is a good metric of where structure exists; it thus

provides a potentially very useful form of feedback to the system

• The co-occurrence of sounds is only part of what identifies a word

• A similar procedure can used for learning grammatical categories.

This time, sequences of words are teached instead of sequences of

sounds/letters. Instead of analysing prediction errors, this time a

cluster analysis of the patterns formed on hidden units is useful.

 20

3 Learning to count without a counter

 21

The computational power of (recurrent) neural networks

• Hava Siegelmann & Eduardo Sontag: On the computational power of

neural nets

• Jiri Sima & Pekka Orponen: A computational taxonomy and survey

of neural network models

• Peter Tino, Bill Horne, Lee Giles, and Pete Collingwood: Finite state

machines and recurrent neural networks - automata and dynamical

systems approaches

• Janet Wiles & Jeff Elman: Learning to count without a counter: A

case study of dynamics and activation landscapes in recurrent

networks.

 22

The counting task

• Can a recurrent network be trained to predict the deterministic

elements in sequences of the form an bn where n =1 to ...?

• an bn is one of the simplest CF languages

• The study shows that recurrent network are able to emulate certain

aspects of a pushdown automaton

• It is suggested to use the proposed solution as a platform for

developing a more general understanding of recurrent networks as

computational mechanisms

 23

Network and training

• A training set consisting of 356 strings,

containing a total of 2298 tokens of a and

b (coded as 10 and 01, respectively).

• These strings conformed to the form an bn ,

with n ranging from 1 to 11

• Networks was trained using back

propagation through time (for 8 time steps). Training was carried out

for a total of 3 million inputs.

• A separate set of test stimuli were generated which consisted of all

possible strings with n ranging from 1 to 30 so it was possible to test

generalization to depths greater than that encountered during training.

 24

 Results of simulation

• After 1 million training cycles 9 of the 20 identical networks learned

the language for n ≤ 7. One network generalized to n≤11. The other

networks learned the language a* b* . This is the language consisting

of any number of as followed by any number of bs

• After 2 million training cycles 4 of the 20 identical networks

generalized the correct language for to n ≤ 12. One network

generalized to n≤18. The remaining networks had learned a* b* .

• Subsequent replications showed a similar statistics, with at least one

network that generalized to approximately a depth of 18. We focus on

that network for analysis.

 25

Simplified network

h(t) = σ(bias+ia⋅wa+ ib⋅wb+ h(t-1)⋅w)

h(t) = σ(b + h(t-1)⋅w)

Dynamic properties of the network,

with w=10 and b=−5.

If we begin with h(0) greater than

0.5, we see the movement in

activation space shown in the figure.

 26

Converging and diverging regimes

With negative weights w, two different regimes are found:

converge inward (left) and diverge out (right).

 27

Network with two hidden units

Hidden unit oscillations in

trained network, 7 a’s (spiral

on lower left, representing

hidden unit 1), followed by 7

bs (spiral on upper right,

representing hidden unit 2).

First regime: winding up a

spring. The presentation of

the first b moves the network

in the second regime:

unwinding the spring.

 28

 Conclusion: how to count with a sand glass

aaaaaaaaaaaaaaaaaaa

bbbbbbbbbbbbbbbbb

 29

4 General Conclusions

• The sort of memory that simple recurrent networks provide differs

dramatically from the traditional cognitive models

• They process strings of items item by item but use their context units

to incorporate information about previous items

• In such networks, the recursive activity can extend through many

cycles, although the further back the cycle, the more degraded is the

information in the context pattern and the less it contributes to current

activity

• Prior notions of how recurrent networks might be expected to solve

familiar computational problems are to be regarded as open

hypotheses only. We should be prepared for surprises.

