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Ever since the discovery of neural networks, there has been a controversy between two modes of information 
processing. On the one hand, symbolic systems have proven indispensable for our understanding of higher 
intelligence, especially when cognitive domains like language and reasoning are examined. On the other hand, it 
is a matter of fact that intelligence resides in the brain, where computation appears to be organized by numerical 
and statistical principles and where a parallel distributed architecture is appropriate. The present claim is in line 
with researchers like Paul Smolensky and Peter Gärdenfors and suggests that this controversy can be resolved by 
a unified theory of cognition – one that integrates both aspects of cognition and assigns the proper roles to 
symbolic computation and numerical neural computation.  

The overall goal in this contribution is to discuss formal systems that are suitable for grounding the formal 
basis for such a unified theory. It is suggested that the instruments of modern logic and model theoretic 
semantics are appropriate for analyzing certain aspects of dynamical systems like inferring and learning in neural 
networks. Hence, I suggest that an active dialogue between the traditional symbolic approaches to logic, 
information and language and the connectionist paradigm is possible and fruitful. An essential component of this 
dialogue refers to Optimality Theory (OT) – taken as a theory that likewise aims to overcome the gap between 
symbolic and neuronal systems.  In the light of the proposed logical analysis notions like recoverability and 
bidirection are explained, and likewise the problem of founding a strict constraint hierarchy is discussed. 
Moreover, a claim is made for developing an “embodied” OT closing the gap between symbolic representation 
and embodied cognition.  

1 Introduction 

To date, progress in cognitive neuroscience has been hindered by the enormity of the gap 
between our understanding of some low-level properties of the brain on the one hand, and of 
some very high-level properties of the mind on the other hand. Research on parallel 
distributed processing and neural networks (connectionist paradigm) has tried to reduce this 
gap but was only partially successful. A main characteristic of mainstream connectionism is 
its eliminative character, i.e. the idea that the basic architecture of symbolism (including its 
crucial concepts such as representations, rules, compositionality, and modularity) has to be 
replaced by the concepts of neural networks (cf. Churchland, 1986). In this way, the main 
advantage of traditional symbolism – the transparency and relative simplicity of descriptions 
and explanations – are likewise eliminated.  

In contrast, there are other researchers who like to play down the neuronal perspective as 
an issue of implementation. Representatives of this position are, inter alia, Fodor and 
Pylyshyn (1988), who insist that the proper role of connectionism in cognitive science is 
merely to implement existing symbolic theory. According to this view, the systematicity of our 
linguistic competence can be explained only by assuming a classical, symbolist architecture of 
cognition. If this position reflects an adequate research programme, then the task of 
overcoming the gap between symbolism and its neural embodiment is not really important for 
the understanding of our higher-level cognitive abilities.  

The methodological position pursued in this article is an integrative position. It claims that 
both modes of computation – symbolic and neural – are theoretically justified and equally 
important and that there is no need to eliminate one of them. In the case under discussion the 
point is to assume that symbols and symbol processing are a macro-level description of what 
is considered as connectionist system at the micro level. This position is not unlike the one 
taken in theoretical physics, relating, for example, thermodynamics and statistical physics, or, 
in a slightly different way, Newtonian mechanics and quantum mechanics. Hence, the idea is 
that the symbolic and the subsymbolic mode of computation can be integrated within a 



 2

unified theory of cognition. If successful, this theory is able to overcome the gap between the 
two modes of computation and it assigns the proper roles to symbolic, neural and statistical 
computation (Balkenius & Gärdenfors, 1991; Blutner, 2004; Graben, 2004; Kokinov, 1997; 
Smolensky, 1995; Smolensky & Legendre, to appear). 

There is a second methodological aspect that relates to the status of theoretical models in 
integrated research. My primary aim is the demonstration that the tools of logic and algebraic 
semantics are useful for understanding the emergent properties of neural networks dynamics. 
However, the dynamics of real neural networks is rather complicated. These systems are 
perhaps among the most complex known to science. And it is completely unrealistic to 
understand the emergent properties of such systems by trying to model in detail all what is 
known about the basic principles of neural operation and causal mechanisms of individual 
nerve cells.  Rather, radical simplification is in order even if these simplifications appear 
completely unrealistic.  These simplifications may lead to different theoretical models which 
make different views explicit, and this makes it easier to structure the debate for or against a 
certain position. Theoretical models bring out the hidden assumptions of an approach, 
particularly with respect to the elementary neural mechanisms that are required. Moreover, 
they help to assess the plausibility of certain assumptions, for example with respect to the 
assumed network architecture. They may invite the construction of new models that make 
another view and other functional determinants explicit. Even if it is not possible to collect the 
necessary empirical data to make the model predictions empirically grounded, a lot can still 
be learned about the causal determinants of certain forms of behavior. Finally, even 
oversimplified theoretical models may suggest new experiments for empirical data collection. 

A third methodological aspect concerns a potential misunderstanding. In the following I 
will pursue a certain kind of propositional default logic to describe inferences in neural 
networks. This might suggest that certain logical systems get a deeper justification in terms of 
neural processing, or it might even suggest that I'm proposing a neural underpinning of certain 
types of natural reasoning. Hence, it might appear as if we are running in a neuro-cognitive 
Frege-fallacy by seeing logic as part of cognitive neuroscience. However, such conclusions 
are unjustified. I only suggest to see the proposed logical system as a kind of meta-language 
which is useful for modelling certain constraint-based symbolic systems. This is analogous to 
the use of Prolog as a logical programming language. Without doubt, Prolog can be used for 
many different applications starting from the modelling of parsing and natural language 
comprehension and going on to the modelling of planning mechanisms and the abilities of 
logical inference agents. Nobody would suggest that these applications – if successful – give a 
deeper justification for Prolog as part of Cognitive Linguistics (at least if we reject the strong 
view of Artificial Intelligence; see Searle (1980)).  In a similar way, the present logical system 
can be used for many different purposes. This becomes pretty clear when we enlighten the 
close connection to Optimality Theory (OT) – a general framework which was introduced by 
Prince & Smolensky (1993) for describing constraint interaction in Generative Grammar.  

In the following I will address the issue of formal tools and logical systems which are 
suitable for grounding the basis for a unified theory of cognition, and I will suggest that an 
active dialogue between the traditional symbolic approaches to logic, information and 
language and the connectionist paradigm is possible and fruitful. An essential component of 
this dialogue refers to OT (Prince & Smolensky, 1993) – taken as a theory that likewise aims 
to overcome the gap between symbolic and neural systems.  

Section 2 introduces symmetric neural networks and explains their basic properties. The 
idea of inferences in neural networks is explained in Section 3. The developed inferential 
notion rest on the (non-symbolic) concept of information states and is adequate for describing 
how neuron activities spread through a symmetric network. Section 4 discusses Penalty Logic 
– a logic that was introduced by Pinkas (1995) in order to demonstrate what kind of logical 
systems symmetric networks can implement. In Section 5 a logic called Penalty/Reward logic 
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is introduced and it is shown that such a logic is adequate tool for dealing with 
underspecification and conceptual enrichment in symmetric networks. In Section 6 I will 
discuss the relations to OT, and Section 7 draws some conclusions and shows the connection 
to recent efforts toward developing an embodied view of cognition. 

2 Symmetric Networks 

Connectionist systems aim at modelling aspects of the nervous system on an abstract 
computational level. (Good introductions are given in Bechtel, 2002; McClelland & 
Rumelhart, 1986; Rojas, 1996). The central concept in a connectionist system is the individual 
unit ('node') which models the functionality of a neuron or a group of neurons. In fact, the 
units/nodes of most connectionist models are vastly simpler than real neurons. However, such 
networks can behave with surprising complexity and subtlety. This is because processing is 
occurring in parallel and usually interactively. In many cases, the way the units are connected 
is much more important for the behaviour of the complete system than the details of the 
individual units.  
 In the following we will assume that the individual units of a connectionist network 
correspond to larger groups of neurons, sometimes called columns, pools or assemblies 
(Feldman & Ballard, 1982; Hebb, 1949; Wennekers & Palm, 2000). A central idea of the 
assembly concept is that assemblies can overlap, meaning that one and the same neuron can 
be part of different assemblies. The organization of assemblies is done according to functional 
criteria and can be different for different functional contexts. Necessary conditions for 
constituting an assembly are strong internal couplings within the assembly. 
 The simplest form of describing the activation dynamics of single units is to assume a 
nonlinear function that yields the (average) firing rate of the unit given the sum potential of 
the unit. This sum potential can be calculated by weighted linear combinations of the firing 
rates of the incoming units. In the present approximation it goes without calculating the full 
action potentials (spikes). All  that is needed are the firing rates of the units, which are directly 
transferred to the other cells. It has been argued that this method yields a valid approximation 
of realistic spiking behaviour under certain conditions (for details, see Wennekers, 1999). 
However, it has also been argued that simple rate-based models are not sufficient to model 
information processing in neuronal systems.  There is increasing evidence that the information 
transferred by a unit consists not only in the average firing rate but also includes the phase of 
the spiking functions. This might be relevant for explaining binding by synchronization (e.g. 
Shastri & Ajjanagadde, 1993; Singer & Gray, 1995; von der Malsburg, 1981). In the 
following I will simply ignore this complication.1 
 There are different kinds of connectionist architectures. In multilayer perceptrons, for 
instance, we have several layers of nodes (typically an input layer, one or more layers of 
hidden nodes, and an output layer). A fundamental characteristic of these networks is that 
they are feedforward networks, that means that units at level i may not affect the activity of 
units at levels lower than i. In typical cases there are only connections from level i to level 
i+1. In contrast to feedforward networks, recurrent networks allow connections in both 
directions. A nice property of such networks is that they are able to gather and utilize 
information about a sequence of activations. Further, some types of recurrent nets can be used 
for modelling associative memories. If we consider how activation spreads out we find that 
feedforward networks always stabilize. In contrast, there are some recurrent networks that 
never stabilize. Rather, they behave as chaotic systems that oscillate between different states 

                                                 
1 Some authors doubt that "binding by synchronization" is really such a realistic solution to the binding problem 
as it often is suggested. For instance, Palm & Wennekers (1997) argue that also other mechanisms are thinkable 
based on purely rate-based information.    
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of  activation.  
 One particular type of recurrent networks is a symmetric network, which is also called a 
Hopfield network (Hopfield 1982). Such networks always stabilize. Hopfield proved that by 
demonstrating the analogy between this sort of networks and the physical system of spin 
glasses and by showing that one could calculate a very useful measure of the overall state of 
the network that was equivalent to the measure of energy in the spin glass system. A Hopfield 
net tends to move toward a state of equilibrium that is equivalent to a state of lowest energy in 
a thermodynamic system.  
 As mentioned already, neural networks can be considered systems of connected units. 
Each unit has a certain working range of activity, which can be represented by an interval [a, 
b] if an analogous unit is assumed (e.g. Hopfield, 1984; Hopfield & Tank, 1985); a indicates 
the minimal firing rate of the unit and b indicates the maximal firing rate. Usual choices for 
the working range of a node are the interval [0, 1] (e.g. Balkenius & Gärdenfors, 1991; 
Pinkas, 1995) or the interval [-1, +1] (Blutner, 2004). In the latter case the value 0 can be 
taken as indicating the resting rate. Though neurons with different working ranges can be 
assumed to be basically equivalent (supposing the thresholds are adapted appropriately), there 
may be differences (i) due to the interpretation of the activations, (ii) due to the simplicity of 
the resulting equations, and (iii) due to the stipulation of different discrete subsets when it 
comes to the introduction of logical values. The discrete values typically taken are {0, 1}⊂ [0, 
1]  in the first case (classical binary logic) and {-1, 0, +1}⊂ [-1, +1] in the second case (three-
valued logic). 
 A possible state s of the system describes the activities of each node: s ∈ [a, b]n, with n = 
the number of units. A possible configuration of the network is characterized by a connection 
matrix w. Hopfield networks are defined by symmetric configurations and zero diagonals (–∞ 
< wij < +∞, wij = wji , wii = 0). That means node i has the same effect on node j as node j has on 
node i, and the nodes don't affect themselves.2 The fast dynamics describes how node 
activities spread through that network. In the simplest case this is described by the following 
update function: 
 

(1) f(s)i = θ(Σj wij sj)  (θ a nonlinear function, typically a step function or a sigmoid 
function). 

 
Equation (1) describes a nonlinear threshold unit. This activation rule is the same as that of 
Rosenblatt’s perceptron. It is applied many times to each unit. Hopfield (1982) employed an 
asynchronous update procedure in which each unit, at its own randomly determined times, 
would update its activation (depending on its current net input).3 
 Using the interval [0, 1] as working range of a unit, Balkenius & Gärdenfors (1991) have 
argued that the set S =  [0, 1]n  of activation states of a network with n units can be partially 

                                                 
2 It is often mentioned that these assumptions are highly implausible when taking the units of the network as real 
neurons. It is not clear why real networks should be symmetric and irreflexive. If the assembly idea comes in, we 
can overcome this problem since it is plausible to assume that the formation of assemblies happens under the 
pressure of stabilisation, and this might be one of the reasons for symmetry and irreflexivity.  

Some people doubt the plausibility of the 'neuron doctrine'. Based on the finding that in the cerebral cortex 
the majority of neurons have only dendrites and the axons are missing there (this contrasts with the preripheral 
nervous system system where almost every neuron has an axon) (Jibu & Yasue, 1995, p. 100ff ).  Hence, it has 
been argued that the working of the cerebral cortex can be better understood by certain microscopic physical 
processes taking place in the sophisticated network of dendrites of neurons without axons, that is, in the dendritic 
network (Jibu & Yasue, 1995; Pribram, 1991). The spin-glass model (or, equivalently, the Hopfield network) can 
be seen as a first approximation to the dendritic network (Jibu & Yasue, 1995). Hence, Hopfield networks can be 
seen as a good starting point for modelling brain activity independent of whether we accept the neuron doctrine 
or not.  

 
3 The use of asynchronous updates helps to prevent the network from falling into unstable oscillations. 
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ordered in accordance with their informational content. Assuming that the vector 0 = <0, 0, 
…, 0> represents a scheme with minimal informational content and that the vector vector 1 = 
<1, 1, …, 1> represents maximal informational content, then the following ordering can be 
seen as reflecting greater positive informational content: 
  
(2) s≥t  iff  si≥ti≥0, for all 1≤i≤n    
 
We call this interpretation of the activation states which is based on the ordering (2) the 
Boolean option.4  
 Sometimes it is useful to assume that both endpoints of the unit's working range carry 
maximal information and one value in the centre of the scale carries minimal information. The 
plausibility of such a choice was mentioned by Balkenius & Gärdenfors (1991). These authors 
suggested to take both 0 and 1 as states of maximal information and to assume that there is a 
resting state  ½  that represents minimal information. Unfortunately, they didn't work out this 
proposal. 
 In Blutner (2004) the working range of each unit is stipulated to be [-1, +1]; the 
activations +1 and -1 indicate maximal specification; the resting activation 0 indicates 
(complete) underspecification. Generalizing Balkenius & Gärdenfors' (1991) idea, the set S =  
[-1, +1]n  of activation states can be partially ordered in accordance with their informational 
content:  
 

(3) s≥t  iff  si≥ti≥0 or si≤ti≤0, for all 1≤i≤n.   (Read s≥t as s is at least as specific as t) 
 

It is a simple exercise to show that the poset <S, ≥> doesn't form a lattice yet. However, it can 
be extended to a lattice by introducing a set ⊥ of impossible activation states: ⊥ = {s: si =nil 
for 1≤i≤n}, where nil designates the "impossible" activation of an unit, i.e. a clash between 
positive and negative activation (for details, see Blutner, 2004). Further, it is possible to show 
that the extended poset of activation states <S∪⊥, ≥> forms a DeMorgan lattice. This allows 
us to interpret these activation states as propositional objects ('information states'). It is 
convenient to call this interpretation of the activation states the DeMorgan option. 
 Symmetric networks may be viewed as searching for the local minima of a quadratic 
function called an energy function (or Ljapunov function). The important fact proven in 
Hopfield (1982) says that in the case of asynchronous (non-deterministic) updates, the 
function 
 

(4)  E(s) = −∑i>j wij si sj   
 
is a Ljapunov function of the dynamic system described by the equation in (1)5; i.e., when the 
activation state of the network changes, E can either decrease or remain the same. Hence, the 
output states lim n→∞ fn(s) can be characterized as the local minima of the Ljapunov-function. 
A consequence of this result is that all states s in a symmetric network develop under 
asynchronous updating into resonances, i.e. into stable states of the network that attract other 
states (for details, see Cohen & Grossberg, 1983). 
 Usually, asynchronous updating results in stable states that are local but not global 
minima of the energy function E. The Boltzman machine (Hinton & Sejnowski, 1983; Hinton 
& Sejnowski, 1986) is a modification of the Hopfield network that realizes the global minima, 
i.e. their output states lim n→∞ fn(s) can be characterized as the global minima of the Ljapu-
nov-function. Like the Hopfield net, the Boltzman machine updates its units by means of an 
asynchronous update procedure. However, it employs a stochastic activation function rather 

                                                 
4 <S, ≥> forms a Boolean algebra if the underlying neural network is binary (cf. Balkenius & Gärdenfors, 1991) 
5 The simple form of the energy function is due to assuming zero thresholds. We can always mimic the case of 
non-zero thresholds by assuming bias nodes with a fixed input activation.  
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than a deterministic one. This activation function can be considered to realize some stochastic 
noise (“faults”) in a decreasing rate during the processing of a single pattern.6 
 Updating an information state s may result in an information state f...f(s) that does not 
include the information of s. However, if we want to handle logical inferences, it is important 
to interpret updating as specification. That means we have to make sure that the initial state s 
has to be informationally included in the resulting update. Hence, we have to "clamp" s 
somehow in the network. A technical way to do that has been proposed by Balkenius & 
Gärdenfors (1991) making use of an update function f that 'clamps' s in the network (see also 
Blutner, 2004).7 Fortunately, the aforementioned formal results derived for asymptotic 
updating without clamping also hold for asynchronous updating with clamping.  
 Hence, the following set of asymptotic updates of s is well defined if we use an 
asynchronous update function f with clamping: 
 

(5) ASUPw(s) = {t: t = lim n→∞ fn(s)} 
 
Further, in the case of the Boltzman machine, we can characterize the set of asymptotic 
updates as the set of all specifications of s that minimize the energy E of the system. Using the 
expression minE(s) to indicate this set of global energy minima, we have 
 
(6) ASUPw(s) = minE(s). 
 
The following example (borrowed from Blutner, 2004) gives an illustration of the basic 
concepts introduced so far. 
 
 
 
 
 
 
 
 
 
Figure 1: Symmetric network with weight matrix  
 
This figure shows a symmetric network consisting of three units (labelled 1, 2, and 3) and the 
corresponding connection matrix w. The set of activation states is S = [–1, +1]3. Clamping 
node 1, the fast dynamics yields an output state where node 2 is activated and node 3 is 
inhibited: 
 
(7) ASUPw(<1 0 0>) = {<1 1 –1>} 
 
The same result is obtained if we consider the energy function on the domain S: 
 
(8) E(s) = –0.2 s1s2 – 0.1 s1s3 + s2s3 
 
The following table shows the nine possible specifications of the initial state <1 0 0> if we 
restrict ourselves to the discrete subdomain S' = {–1, 0, 1}3: 
 

                                                 
6 The procedure is called 'simulated annealing' (based on an analogy from physics). For details see Hinton & 
Sejnowski, (1983; 1986). 
7 Clamping is not only required if we try to model logical inferences in a connectionist network but also applies 
in the case of pattern completion (see, e.g. Rumelhart, Hinton, & McClelland, 1986; Smolensky, 1986). 
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s [state] E(s) [energy]  
<1 0 0> 
<1 0 1> 
<1 0-1> 
<1 1 0> 
<1 1 1> 
<1 1-1> 
<1-1 0> 
<1-1 1> 
<1-1-1> 

0 
–0.1 
 0.1 
–0.2 
0.7 
–1.1    
0.2 
–0.9 
1.3 

 
 
 
 

  
 
 

  
Table 1: Discrete specifications of <1 0 0> and the energy of all specifications. The energy-
minimal state is indicated by . It corresponds to the output state given in (7). 
 
In order to demonstrate that the working range of the nodes of the network is not essential for 
the dynamic properties of the network, we modify our example so that it relates to an 
activation space [0, 1]3. The discrete subspace that corresponds to the states in Table 1 is 
obtained if we consider the map 1 1, 0 ½, and –1 0. Further, we have to adapt the energy 
function from (8) which is based on zero thresholds. Instead of the zero thresholds we assume 
thresholds θi = ½, which are positioned in the centre of the working range. As a consequence, 
we have to add an additional term −∑i θi⋅si, which can also be seen as a consequence of 
introducing bias nodes with input activity 1 (see footnote 5): 
 
(9) E(s) = –0.2 s1s2 – 0.1 s1s3 + s2s3 – ½ (s1+s2+s3) 
 
Table 2 shows the energies of the corresponding states of the discrete subspace {0, ½ , 1}3. As 
a matter of fact the energy ordering of the states in Table 2 is the same as the energy ordering 
of the corresponding states in Table1. Hence, the working space of the neurons does not really 
affect the ordering of the states if the thresholds are adopted accordingly.  
 
 

s [state] E(s) [energy]  
<1 ½  ½> 
<1  ½  1> 
<1  ½  0> 
<1  1 ½ > 
<1  1  1> 
<1  1  0> 
<1  0 ½ > 
<1  0  1> 
<1  0  0> 

-0.9 
-0.95 
-0.85 
-1.00 
-0.8 
-1.2 
-0.8 
-1.1 
-0.5 

 
 
 
 

 
 
 

 
Table 2: Corresponding specifications for the activation space [0, 1]3 . The energy is 
calculated according to formula (9) and the energy of all specifications. The energy-minimal 
state is indicated by .  
 
Although the actual working range of a unit is only of marginal interest, the interpretation of 
the activation values is essential. If we take the interval [0, 1] as working range, for instance, 
then the interpretation of the value 0 is essential. We can either see 0 as indicating maximal 
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underspecification or as indicating maximal specification (together with the value 1; the value 
½ is typically used to indicate underspecification in this case). The former interpretation 
conforms to the Boolean option; the latter conforms to the DeMorgan option. The 
consequences of this distinction are discussed in sections 4 and 5. 

3 Inferences in symmetric networks 

In the previous section we have seen that the propositional objects called information states 
are related by a partial ordering ≥. It is obvious that this relation can be interpreted as a strict 
(monotonic) entailment relation since it satisfies the Tarskian restrictions for such a relation: 
 
(10) a. s ≥ s      (Reflexivity) 

b. if s ≥ t and s ◦ t ≥ u, then s ≥ u  (Cut) 

c. if s ≥ u, then s ◦ t ≥ u   (Monotonicity) 

 
Here we have to make use of the operation  s ◦ t =def sup{s,t}, which is called conjunction. 
This operation expresses the simultaneous realization of two activation states. In the case 
where ≥ expresses the positive informational content with regard to the state set [0, 1]n  
(Boolean option) the explicit form of the conjunction operation is given in (11a); in the 
second case where ≥ expresses specificity with regard to the state set  [-1, 1] n (DeMorgan 
option) the conjunction operation is given in (11b): 
 
(11) a. (s◦t)i  =  max(si, ti) 

 
   max(si, ti),  if si,ti≥0 
b.  (s◦t)i  = min(si, ti),  if si,ti≤0 

  nil,  elswhere   
 
As shown by Balkenius & Gärdenfors (1991), Blutner (2004), and in a somewhat different 
sense by Hölldobler (1991), Pinkas (1995), and others, it is possible to define a nonmonotonic 
inference relation that reflects asymptotic updating of information states. Let <S, ≥> be a 
poset of activation states, and w the connection matrix. Then the notion of asymptotic updates 
as given in (5) naturally leads to a nonmonotonic inferential relation between information 
states defined as follows (cf. Blutner, 2004): 
 
(12) s |≈w t  iff  s' ≥ t  for each  s' ∈ ASUPw(s) 
 
Of course, there is an equivalent formulation in terms of energy minimization:8 
 
(13) s |≈E t  iff  s' ≥ t  for each  s' ∈ minE(s) 
 
We also call the inferential relation between information states subsymbolic inferential 
relation and the inferences themselves subsymbolic inferences.  
 Following Balkenius & Gärdenfors (1991), the inferential notion that is adequate to 
describe how neuron activities spread through the network (i.e. the fast dynamics of a neural 
system) can be characterized in terms of the general postulates that Gabbay (1985) and Kraus, 
                                                 
8 We simply have to use of  the equivalence (6) that holds in the case of the Boltzman machine. 
 

{
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Lehmann, and Magidor (1990) have seen as constituting a cumulative (nonmonotonic) 
consequence relation. This holds independently of the particular working range that is chosen 
for the nodes of the network and it rests on the equivalence of the two inferential notions 
defined in (12) and (13). In (14) the relevant properties are listed.  
 
(14) a.  if s  ≥ t, then s  |≈w t      (Supraclassicality) 

b.  s  |≈w s       (Reflexivity) 
 c. if s  |≈w t and s ◦ t  |≈w u, then  s  |≈w u    (Cut) 
 d.  if s  |≈w t and s  |≈w u, then s ◦ t  |≈w u  (Cautious Monotonicity)  
 
For a proof of the validity of these properties in the case of a symmetric network, see Blutner 
(2004). 
 Going back to the earlier example introduced in Figure 1, it is a simple exercise to show 
that the following inferences are valid: 
 
(15) a. <1 0 0> |≈w <1 1 –1> 

b. <1 0 0> |≈w <1 1 0> 
c. <1 0 0> |≈w <0 1 0> 

 
The latter two inferences can be derived from the first one by taking into account that <1 1 –
1>  ≥  <1 1 0>  ≥  <0 1 0>. 
 In connectionist systems (domain) knowledge is encoded in the connection matrix w (or, 
alternatively, the energy function E). In the following two sections I want to discuss the close 
correspondence to certain symbolic systems that represent knowledge in a database consisting 
of expressions with default status. 

4 Penalty Logic 

According to Pinkas (1992; 1995), domain knowledge can be represented by a logic-based 
scheme, the Penalty Logic. This logic associates to each formula of a knowledge base the 
price to pay if this formula is violated. In this section I will give a concise introduction into 
Penalty Logic following in part the exposition in de Saint-Cyr, Lang, & Schiex (1994). 
Further, I will make clear that we have to adopt the Boolean option of interpreting activation 
states in order to reconstruct Pinkas' claim of the equivalence between inferences in Penalty 
Logic and inferences in symmetric networks. 
 Let's consider the language ℒAt of propositional logic (referring to the alphabet At of 
atomic symbols). A triple <At, ∆, k> is called a penalty knowledge base (PK) iff (i) ∆ is a set 
of consistent sentences built on the basis of At (the possible hypotheses); (ii) k: ∆ ⇒ (0, ∞)9  
(the penalty function). Intuitively, the penalty of an expression δ represents what we should 
pay in order to get rid of δ. If we pay the requested price we no longer to satisfy δ. Hence, the 
larger k(δ) is, the more important δ is.  
 Let α be a formula of our propositional language ℒAt . A scenario10 of α  in PK is a subset 
∆’ of ∆ such that ∆’∪{α} is consistent. The cost KPK(∆’) of a scenario ∆’ in PK is the sum of 
the penalties of the formulas of PK that are not in ∆’: 
 

(16) KPK(∆’) = ∑δ∈(∆-∆’) k(δ) 
 

                                                 
9 The notation (0, ∞) refers to the positive real numbers (excluding 0). 
10 I borrow this expression from Poole (1988). 
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A optimal scenario of α in PK is a scenario the cost of which is not exceeded by any other 
scenario (of α in PK), so it is a penalty minimizing scenario. With regard to a penalty 
knowledge base PK, the following cumulative consequence relation can be defined:   
 

(17) α |~PK β iff β is an ordinary consequence of each optimal scenario of α in PK.  
 

Hence, penalties may be used as a criterion for selecting preferred consistent subsets in an 
inconsistent knowledge base, thus inducing a non-monotonic inference relation.  

To illustrate the approach I consider an example from Asimov (1950). Isaac Asimov 
described what became the most famous view of the ethical rules for robot behaviour in his 
“three laws of robotics”11: 

 
First Law 
A robot may not injure a human being.12  
Second Law 
A robot must follow (obey) the orders given it by human beings, except where such orders 
would conflict with the First Law.  
Third Law 
A robot must protect its own existence, as long as such protection does not conflict with the 
First or Second Law. 
 

Now assume some human X says to the robot 'kill my wife'. The relevant knowledge base can 
be formalized by five propositional formulae, where I, F, P have the obvious intended 
meaning in connection with the three laws, S expresses that some human X gives this 
shocking order to the robot, and K expresses the content of the order. The first three formulae 
in (18) express the three laws, the last two formulae express very strong meaning postulates: 
 

(18)  ¬I  5 
F  2 
P  1 
(S ∧ F) → K 1000 
K → I  1000 

 
The positive real numbers associated with the formulae are the penalties. Consider now the 
following two scenarios for S: 
 

(19) ∆1 = {¬I, P, (S ∧ F) → K, K → I} 
∆2 = {F, P, (S ∧ F) → K, K → I} 

 

The cost of these two scenarios with regard to the PK given in (19) are KPK(∆1) = 2 and 
KPK(∆2) = 5, respectively. Since the cost of all other possible scenarios is higher, we can 
conclude that  ∆1 is the optimal scenario of S. Hence, according to the ethical rules, our robot 
should not injure anybody, neither X's wife nor himself.   
 Now we come to the semantic interpretation of the Penalty Logic introduced so far. Let ν 
denote an ordinary (total) interpretation for the language ℒAt (ν: At→{0,1}). The usual 
clauses apply for the evaluation [[ .]] ν of the formulas of ℒAt relative to ν. The following 
function indicates how strongly an interpretation ν conflicts with the space of hypotheses ∆ of 
a penalty knowledge base PK:   
 

                                                 
11 Thanks to Bart Geurts for drawing my attention to this example. 
12 I am simplifying a bit. The original clause is more complicated: "A robot may not injure a human being, or, 
through inaction, allow a human being to come to harm." 
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(20) ℰPK(ν) =def ∑δ∈∆  k(δ) [[ ¬δ]] ν  (ℰ is called the system energy of the interpretation)13
 

 

An interpretation ν is called a model of α just in case [[ α]] ν = 1. A preferred model of α is a 
model of α with minimal energy ℰ (with regard to the other models of α).  As the semantic 
counterpart to the syntactic notion α |~PK β given in (17) we can define the following relation:  
 

(21) α  |≈ PK β iff each preferred model of α is a model of β.  
 

As a matter of fact, the syntactic notion (17) and the semantic notion (21) coincide.  Hence, 
the logic is sound and complete. A proof can be found in Pinkas (1995). 
 With regard to the integration of neural networks and symbolic systems, Pinkas (1992; 
1995) made a breakthrough. On the one hand he was able to demonstrate that the problem of 
finding preferred models for a given set of assumptions can be reduced to the minimization 
problem of an energy function in symmetric networks. On the other hand he showed that the 
minimization problem of an energy function of a symmetric network can be reduced to the 
problem of finding preferred models for a given set of assumptions representing domain 
knowledge 
 In the following I will give a concise description of Pinkas' basic results. I start with 
sketching the transformation that enables one to construct a symmetric network that is 
strongly equivalent with a given knowledge base PK. Strong equivalence means that the 
energy function of the neural network and the system energy of the knowledge base in Penalty 
Logic are the same (up to a constant c). I will sketch the basic elements of this transformation 
only; the reader is referred to Pinkas (1992; 1995) for a fuller description. 
 For each logical expression α a characteristic function B(α): [0, 1]n  [0,1]  is defined. 
The letter B for the translation operation indicates that the translation relates to the Boolean 
option of interpreting activation states. The characteristic function B(α) is defined in its 
analytical form making use of variables xi which refer to real numbers in the interval [0, 1]. 
 
(22) a. B(pi) = xi, where pi designates the ith atomic formula of ℒAt 

b. B(¬α) = 1−B(α) 
c. B(α∧β) = B(α)⋅B(β) 

 
It is simple to see the characteristic function B(α)  has its maximum value(s) exactly when α 
has a value of true (supposing the integer values of xi are the values of the interpretations of 
pi). For example, B(p1∧p2) = x1⋅x2.14 The maximization of x1⋅x2 yields  x1→ 1, x2→1. Further, 
B(p1→p2) = B(¬(p1∧¬p2)) = x1⋅x2–x1+1 and the maximization of the resulting term gives 
three solutions corresponding to the three interpretations that make the material implication 
true. Finally, B(p1∨p2) = B(¬(¬p1∧¬p2)) = x1⋅x2–x1–x2; the maximization again gives three 
solutions. Figure 2 provides a graphical representation of the three characteristic functions. 
 
 

                                                 
13 What I call the system energy of an interpretation (with regard to a PK) is called violation rank for the 
interpretation in Pinkas (1995); deSaint-Cyr et al. (1994) call it the cost of interpretation. 
14 The same function is sometimes used in fuzzy logic. It is called product t-norm (cf. Hajek, 1998). 
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Figure 2: graphical representation of the characteristic functions for conjunction, disjunction, 
and material implication, respectively (from left to right) 
 
Now we are ready to introduce a translation of a penalty knowledge base <At, ∆, k> into a 
symmetric network. We simply construct a network with the following energy function using 
the characteristic function B for translating propositional formulas into numerical functions: 
 

(23) E(x1, …, xn) = ∑δ∈∆ k(δ)⋅B(¬δ)  
 

It can be shown that the constructed symmetric network is strongly equivalent with the given 
knowledge base PK. In other words, we have the following fact: 
 
Fact 1: For each knowledge base PK with the assigned energy function E:  

ℰPK(ν) = E(x1, … xn) for each interpretation ν provided ν(pi) = xi 
 
The proof is a simple consequence of the observation that the value of a propositional formula 
δ for a given interpretation ν is the same as the value of the corresponding characteristic 
function B(δ) provided ν(pi) = xi, i.e.  
 

(24) [[δ]] ν  = B(δ) [ν(p1)/ x1, …, ν(pn)/ xn] 
 

Fact 1 then immediately follows from the definition of  ℰ given in (20). The proof of  (24) is 
by induction using the translation provided in (22). Taking up the earlier example about the 
robot's ethics (18), we come to the following energy calculation (instead of the variables xi we 
use the names of the atomic formulas as names for the variables): 
 

Penalty  Expression in PK  Energy function 
5 
2 
1 
1000 
1000 

¬I   
 F   
 P   
 (S ∧ F) → K 
 K → I 

 5 I 
–2F 
–P 
 1000(S⋅F–S⋅F⋅I) 
 1000(K–K⋅I) 

E = 5I–2F–P+1000K+1000S⋅F–1000K⋅I–1000S⋅F⋅I
 
Table 3: Calculation of the energy function for the PK given in (19) 
 
The energy function contains a cubic term –1000S⋅F⋅I that goes beyond the simple quadratic 
energy functions introduced in (4). Such higher order energy functions refer to connectionist 
networks having sigma-pi units with multiplicative connections (Rumelhart et al., 1986). In 
the case under discussion, the following network results: 
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Figure 3: Higher order network representing the energy function calculated in Table 3 
 
Pinkas (1992) has shown that higher order terms can be eliminated by introducing hidden 
units. In the case of the cubic terms const⋅X⋅Y⋅Z  here is the relevant elimination rule, where 
the variable T refers to the hidden unit: 
 

   2w⋅X⋅T+2w⋅Y⋅T+2w⋅Z⋅T-5w⋅T,  if w<0 
(25) w⋅X⋅Y⋅Z =  

   w⋅X⋅Y-2w⋅X⋅T-2w⋅Y⋅T+2w⋅Z⋅T+3w⋅T,  if w>0 
 

In the present case the coefficient is negative and the final quadratic energy function is 
 
(26) E = 5I-2F-P+1000SF-2000ST-2000FT-2000IT+5000T+1000K-1000KI 
 
The final network with quadratic the energy function and the hidden node T is shown in 
Figure 4. 
 
 
 
 
 
 
 
 
 
 
Figure 4:  First order network with one hidden unit T 
 
This was my brief sketch of how to translate any knowledge base PK into a strongly 
equivalent symmetric network supposed the Boolean option of interpreting activation states 
has been adopted.   
 There is also a reverse procedure that translates any symmetric network into a PK. I will 
outline this translation now. For simplicity, I exclude higher order units and/or hidden units. 
We consider a Hopfield system with connection matrix w (n units), and we assume At = {p1, 
..., pn} to be a set of atomic symbols. Then we consider the following formulae βij of ℒAt:  
 
 

(27) βij =def  sign(wij)(pi∧pj),  for 1≤i<j≤n 15 
                                                 
15 Sign(x) is an operator that introduces a negation sign "¬" for x<0 and it leaves the expression in its scope 
unchanged if x≥0. For instance, sign(0.2) (α) = α and sign(-0.2) (α) = ¬α. 
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For each connection matrix w the associated penalty knowledge base is defined as PKw = <At, 
∆w, kw>,  where the following two clauses apply: 
 

(28) a. ∆w = {βij: 1≤i<j≤n} 
b.  kw(βij) = |wij| 

 

With these notations at hand we can state the following fact: 
 
Fact 2: For each connection matrix w the energy function E(s) = −∑i>j wij si sj  is strongly 

equivalent with the associated penalty knowledge base PKw; i.e. ℰPK(ν) = E(s1, …, sn) 
+ constant, provided ν(pi) = si 

 
For the proof we notice first that  
    ν(pi)⋅ν(pi),  if wij ≥ 0 
[[βij]] ν = [[sign(wij)(pi∧pj)]] ν =  
    1−ν(pi)⋅ν(pi), if wij < 0 
Then we have the following equivalences: ℰPK(ν) =def ∑δ∈∆  k(δ) [[ ¬δ]] ν = ∑ i>j  k(βij) [[ ¬βij]] ν 
= const − ∑ i>j  wij⋅ ν(pi)⋅ν(pi)) = const + E(s) + constant (provided ν(pi) = si ). Hence, ℰPK(ν) 
and E(s) differ only by a term const = ½∑ i>j (wij + |wij|) and are therefore strongly equivalent.   
 For the example introduced in Figure 1 the energy function (9) was associated assuming 
bias nodes with fixed activity 1 that mimic thresholds θi = ½. This expression is repeated here 
for convenience: 
 

(9)  E(s) = −0.2 s1s2 − 0.1 s1s3 + s2s3 − 0.5 (s1+s2+s3) 
 
The associated penalty knowledge base then comes out as follows: 
 

(29)    p1∧p2  0.2 
   p1∧p3  0.1 
¬(p2∧p3)  1 
   p1   0.5 
   p2   0.5 
   p3   0.5 

 
With regard to this PK it is not difficult to show that 
 
(30) a. p1 |~PK p2  

b. p1 |~PK ¬p3  
 
It would be nice to have a possibility to express such inferences directly as subsymbolic 
inferences in the corresponding network. Unfortunately, this is possible only for inferences 
between positive literals such as considered in (30a): 
 

(31) <1 0 0> |≈E <1 1 0> 
 
Here the state <1 0 0> indicates an activation of the first node that corresponds to the atom p1, 
and <1 1 0> indicates that, in addition, the second node is activated (corresponding to p2). 
Unfortunately, the zero elements cannot be interpreted as negations. The reason is that in the 
Boolean option of interpreting node activities the vector 0 = <0, 0, …, 0> indicates a scheme 
with minimal informational content. Hence, 0 indicates maximum underspecification, not a 
negative truth-value. As a consequence, we have no direct way to express the inferences (30b) 
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in the subsymbolic mode.16 In the next section we overcome this shortcoming by adopting the 
DeMorgan option of interpreting activation states.  

5 Penalty/Reward Logic  

The DeMorgan option of interpreting activation states means that we explicitly consider a 
resting state in the centre of the unit's working range in order to represent minimal 
information (complete underspecification). For reasons of symmetry and parsimony I choose 
the interval [−1, +1] as working range of a unit; the activations +1 and −1 indicate maximal 
specification (corresponding to the truth values T and F); the activation 0 indicates 
underspecification (see Section 2). 
 Assuming a symmetric network with n nodes it is possible now to express all elements of 
the discrete subspace {−1, 0, +1}n ⊂ [−1, 0, +1]n by symbolic expressions. Following Blutner 
(2004), we can do this formally by interpreting the conjunction of literals in ℒAt by the 
corresponding elements of the DeMorgan algebra  <S∪⊥, ≥>.  More precisely, we call the 
triple <S∪⊥, ≥, ↿ ⇂> a Hopfield model for ℒAt if and only if ↿ ⇂ is a function assigning some 
element of S∪⊥ to each atomic symbol and obtaining the following conditions: 
 

(32) a.  ↿α∧β⇂ = ↿α⇂◦↿β⇂ 
b. ↿¬β⇂ =  −↿β⇂ ("¬" converts positive into negative activation and vice versa).  

 

A Hopfield model is called local (for ℒAt) iff it realizes the following assignments:   
 

(33) ↿p1⇂=  <1 0 ... 0>   

 ↿p2⇂=  <0 1 ... 0> 
  ...   
 ↿pn⇂=   <0 0 ... 1>  
 

An information state s is said to be represented by a formula α of  ℒAt (relative to a Hopfield 
model M)  iff   ↿α⇂ = s. It is obvious that each discrete state s∈{−1, 0, +1}n can be represented 
by a conjunction of literals in ℒAt using the local Hopfield model M given in (33). For 
instance, if we take n=3, the following formulae represent proper activation states: (i) p1 

represents <1 0 0>, (ii) p2 represents <0 1 0>, (iii) p3 represents <0 0 1>, (iv) p1∧p2 represents 
<1 1 0>, (v) ¬p1 represents <−1 0 0>, and (vi) p1∧p2∧∼p3 represents <1 1 −1>. Hence, for 
local Hopfield models each discrete activation state can be considered symbolic.  
 Now the following important question arises: can each connection matrix be translated 
into domain knowledge such that all subsymbolic inferences between information states 
correspond to inferences in a certain symbolic system (perhaps a Penalty Logic or a 
modification of it)? And, conversely: can we translate domain knowledge into a connection 
matrix such that all symbolic inferences of our logical system correspond to subsymbolic 
inferences of he connectionist system? The answer to both these question is yes if we use a 
variant of Pinkas' Penalty Logic – a variant I will call Penalty/Reward Logic. I will proceed as 
follows: first I introduce Penalty/Reward Logic, next I explain the transformation that encodes 

                                                 
16 Of course, we can introduce a hard rule ¬p3↔p4 in the knowledge base PK, and correspondingly an  
additional node that corresponds to p4 into the network. Then we have p1 |~PK p4 instead of (30b) and this 
corresponds to <1 0 0 0> |≈E <0 0 0 1> in the extended space. 
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domain knowledge expressed in this logical system into a connection matrix of a symbolic 
network, after that I present the reverse transformation, and finally I discuss the advantages of  
the present approach in comparison with Pinkas' approach.  
 The syntax of Penalty/Reward Logic is the same as the syntax of Penalty Logic. Hence, 
we consider the language ℒAt of propositional logic (referring to the alphabet At of atomic 
symbols) and take a triple <At, ∆, k> as a penalty/reward knowledge base (PRK) where (i) ∆ 
is a set of consistent sentences built on the basis of At and (ii) k: ∆ ⇒ (0, ∞) is our cost 
function. The idea that is connected with the cost function is that it penalizes an expression of 
∆ if it is not satisfied with regard to given circumstances and it rewards an expression of ∆ if it 
is satisfied. Hence, for a scenario of α in PRK (i.e. a subset ∆’ of ∆ such that ∆’∪{α} is 
consistent) the cost KPRK(∆’) of the scenario ∆’ is defined as follows: 
 

(34) KPRK(∆’) = def  ∑δ∈(∆-∆’) k(δ) - ∑δ∈∆’  k(δ)  
 
Hence, the cost of a scenario takes into account both the beliefs that are included in the 
scenario  ∆’ and the beliefs that are not included in ∆’. The missing beliefs give a positive 
contribution to the overall cost and the included beliefs give a negative contribution. This 
contrasts with the Penalty Logic correspondence (16) where only the missing beliefs count. 
 However, this contrast is not really striking since we can show that Penalty Logic and 
Penalty/Reward Logic are weakly equivalent in the terminology of Pinkas (1995); that means 
they are connected by a linear transformation: 
 
(35) KPRK(∆’) = 2 KPK(∆’) - ∑δ∈∆ k(δ) 
 
The last term can be seen as constant. As a consequence, Penalty Logic and Penalty/Reward 
Logic produce the same orderings of scenarios. However, there are differences in the 
probability distributions that can be calculated by using standard statistical techniques 
(Boltzman machine: cf.  Hinton & Sejnowski, 1983; Hinton & Sejnowski, 1986). 
 I will define now the system energy ℰPRK(ν) which indicates how strongly an 
interpretation ν conflicts with the space of hypotheses ∆ of the  knowledge base PRK:   
 

(36) ℰPRK(ν) =def  –∑δ∈∆  k(δ) [[δ]] ν 
 

This definition appears to be identical with the earlier definition (20). However, we are 
working with the DeMorgan option now and an interpretation ν according to this option 
denotes a function ν: At→{–1,1}). The usual clauses apply for the evaluation [[ .]] ν of the 
formulas of ℒAt relative to ν if we take into account that –1 stands for false now instead of  0 
in the Boolean case.  
 The definition (17) for a syntactic consequence relation and (21) for its semantic pendant 
can be taken over from the Boolean to the DeMorgan option:  
 

(37) α |~PRK β iff β is an ordinary consequence of each optimal scenario  of α in PRK 
(minimizing the cost KPRK) 

 

(38) α |≈ PRK β iff each preferred model of α (minimizing the system energy ℰPRK) is a 
model of β.  

 

As in the former case, the syntactic notion (37) and the semantic notion (38) coincide.  Hence, 
the logic is sound and complete. A proof can be found in Blutner (2004). 
 Now I come to the transformation that enables one to construct a symmetric network that 
is strongly equivalent with a given knowledge base. Given a logical expression α a 
characteristic function M(α): [–1, 1]n  [–1,1]  is defined. The letter M indicates that the 



 17

translation relates to the DeMorgan option of interpreting activation states. In the present case 
the generated variables xi refer to real numbers in the interval [–1, 1]. 
 

(39) a. M(pi) = xi, where pi designates the ith atomic formula of ℒAt 

b. M(¬α) = −M(α) 
c. M(α∧β) = ½ (M(α)⋅M(β)+M(α)+M(β)−1) 

 

As a matter of fact the amount of the characteristic function M(α) has its maximum value 
exactly when α has a value of true (supposing the integer values of xi are the values of the 
interpretations of pi). For example, M(p1∧p2) = ½ (x1⋅x2+x1+x2–1). The maximization of x1 
x1⋅x2+x1+x2–1 yields x1→ 1, x2→1. Further, M(p1→p2) = M(¬(p1∧¬p2)) = ½ (x1⋅x2+ x2–x1+1) 
and the maximization of the resulting term gives three solutions corresponding to the three 
interpretations that make the material implication true. For the disjunction we get M(p1∨p2) = 
M(¬(¬p1∧¬p2)) = ½ (x1+x2–x1⋅x2+1); the maximization again gives three solutions. The 
shape of these functions is precisely as in Figure 2 but with axis values running from –1 to +1 
instead of from 0 to 1. It is further obvious that the characteristic function M(α) has its 
minimum value(s) exactly when α has a value of false. Now 0 = <0 0 0> builds the centre of 
the three dimensional cube and it conforms to the point of maximum underspecification. 
 The translation that transforms a penalty/reward knowledge base <At, ∆, k> into a 
symmetric network is straightforward. We simply construct a network with the following 
energy function using the characteristic function M for translating propositional formulas into 
numerical functions: 
 

(40) E(x1, …, xn) = –∑δ∈∆ k(δ)⋅M(δ)  
 

It can be shown that the constructed symmetric network is strongly equivalent with the given 
knowledge base PK. In other words, we have the following fact: 
 
Fact 3: For each knowledge base PRK with the assigned energy function E:  

ℰPRK(ν) = E(x1, … xn) for each interpretation ν provided ν(pi) = xi 
 
As in the Boolean case, the proof is a consequence of the observation that the value of a 
propositional formula δ for a given interpretation ν is the same as the value of the 
corresponding characteristic function M(δ) provided ν(pi) = xi, i.e.  
 

(41) [[δ]] ν  = M(δ) [ν(p1)/ x1, …, ν(pn)/ xn] 
 

Fact 3 then immediately follows from the definition of ℰPRK given in (36). The constructed 
network can contain higher order units. These units can be eliminated in the same way as 
discussed in section 4 by introducing hidden units. The main advantage of the DeMorgan 
option relates to the procedure that translates a symmetric network into a symbolic knowledge 
PRK. As in the Boolean case discussed before, I exclude higher order units and/or hidden 
units.  
 A connection between two nodes i and j contributes a term wij⋅xi⋅xj to the energy function. 
Now we can ask what expression α translates to the product xi⋅xj. The answer is the 
biconditional:  M(pi↔pj) = M((pi→pj)∧(pj→pi)) = xi⋅xj+1/8(xi

2⋅xj
2−xi

2−xj
2+1). The last term 

1/8(xi
2⋅xj

2−xi
2−xj

2+1) can be neglected since it always gives the constant 1/8 for the discrete 
values {−1, 0, 1}. Hence, I propose to consider the following expressions γij as a translation of 
a single connection: 
 

(42)  γij =def  sign(wij)(pi↔pj),  for 1≤i<j≤n 
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For each connection matrix w the associated penalty/reward knowledge base is defined as 
PRKw = <At, ∆w, kw>, where the following two clauses apply: 
 

(43) a. ∆w = {γij: 1≤i<j≤n} 
b.  kw(γij) = |wij| 

 

Corresponding to fact 2 in the Boolean case, we can prove now the following fact (cf. Blutner 
2004): 
 
Fact 4: For each connection matrix w the every energy function E(s) = −∑i>j wij si sj is strongly 

equivalent with the associated knowledge base PRKw , i.e.  
ℰPK(ν) = E(s1, …, sn) + constant, provided ν(pi) = si 

 

For the proof we notice first that [[γij]] ν = [[sign(wij)(pi↔pj)]] ν = Sign(wij)⋅ν(pi)⋅ν(pi), where 
Sign(x) equals x if x≥0 and equals −x if x<0. Then we have the following equivalences: 
ℰPRK(ν) =def  −∑δ∈∆  k(δ) [[δ]] ν = −∑ i>j  k(γij) [[γij]] ν = −∑ i>j  |wij|⋅Sign(wij)⋅ν(pi)⋅ν(pi) = −∑ i>j  
wij⋅ ν(pi)⋅ν(pi)) = E(s). Hence, ℰPK(ν) and E(s) are identical provided ν(pi) = si. Thus, they are 
strongly equivalent.  
 At the beginning of this section we introduced local Hopfield models that allow one to 
represent each discrete information state by a conjunction of literals of the propositional 
language ℒAt. Now we can state that each subsymbolic inference between information states 
corresponds to an inference in Penalty/Reward Logic (and vice versa). This is an immediate 
consequence of Facts 3 and 4. 
 
Fact 5:  Let α and β be formulas that are conjunctions of literals. Assume further that a 

penalty/reward knowledge base PRK is associated with the connection matrix w – by 
using either the transformation PRK  w (40) or the transformation w  PRK  (43). 
Then we have: ↿α⇂ |≈w ↿β⇂ iff  α |≈ PRK β  (iff  α |~PRK β) 

 
The equivalence between subsymbolic inferences in Hopfield networks and symbolic 
inferences in Penalty/Reward Logic can be applied in two different ways. First, this outcome 
of the integrative methodology can help the symbolist to find more efficient implementations 
of solving optimization problems and constraint satisfaction problems. Second, the results can 
help the connectionist to better understand their networks and to solve the so-called extraction 
problem, i.e the extraction of symbolic knowledge from connectionist networks. The latter 
approach was stressed by d'Avila Garcez, Broda, & Gabbay (2001) inter alia, the former was 
pioneered by Pinkas (1992, 1995). 
 In our example from Figure 1 the energy function (8) was calculated in case of the 
DeMorgan option, repeated here.  
 
(8)  E(s) = –0.2 s1s2 – 0.1 s1s3 + s2s3 
 
The corresponding knowledge base is given by the following weight-annotated defaults.   
 
(44) p1 ↔ p2 0.2 

p1 ↔ p3 0.1 
p2 ↔ ¬p3 1 

 
The translation mechanism is very simple and transparent: it translates a node i into the 
atomic symbol pi, translates an activating link in the network into the logical biconditional ↔, 
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and translates an inhibitory link into the biconditional ↔ plus an internal negation ¬ of one of 
its arguments. Furthermore, the weights of the defaults have to be taken as the absolute value 
of the corresponding matrix elements.  
 Is the difference between choosing the Boolean option and choosing the DeMorgan option 
really essential? A first hint for an essential difference is obtained if we look at Figure 5 
which presents the energy function (8) as function of s2 and s3 with a fixed value s1=1, i.e. the 
first node is clamped with its maximum activity. We are interested in calculating the 
minimum value of the energy regarding the s2–s3 plane.  Of course, the starting point for the 
minimization route is important. The De Morgan option allows us to take the starting point as 
expressing maximum underspecification. This corresponds to the vector <1 0 0> in the full 
three dimensional activation space or to the two dimensional projection <0 0>. This point is 
called B in Figure 5. B contrasts with the point A, which is  <–1 –1>. A is the starting point in 
a corresponding picture using the Boolean option.  
 

 
 
Figure 5: Energy landscape for calculating the asymptotic updates of  <1 0 0>. Starting points 
for energy minimization: A for the Boolean option, B for the DeMorgan option. 
 
By beginning near the centre of the cube (B) and searching using gradient descent, the 
network has better chances of finding a global minimum than by beginning on the top position 
A. Hence, the De Morgan option bears a real advantage of improving the performance of the 
system. In Hopfield and Tank networks (Hopfield & Tank, 1985) this advantage is regularly 
exploited, and the preferred option is to start the search from the centre of the cube. 
 Another advantage of the De Morgan option concerns the conceptual simplicity and 
naturalness of solving the extraction problem. Of especial importance is that the thresholds 
can be assumed to be zero in cases where the De Morgan option is chosen (with a working 
space [-1, 1] of a unit). Hence, the additional term −∑i θi⋅si can be dropped, which leads to a 
considerable simplification of the translation that transforms symmetric networks into 
symbolic knowledge bases. 
 A third advantage has to do with the explanation of recoverability (bidirectionality). In 
natural language theories this trait refers to a general characteristic of the form-meaning 
relation realized in understanding/production: what we produce we are able to understand 
adequately and what we understand we are able to produce adequately.  Using the DeMorgan 
option of interpreting activation states, this picture will make the explanation much more 
transparent than the Boolean option. 
 In the abstract framework of pattern association patterns at a level A are associated with 
patterns at level B. Recoverability/bidirectionality can now be formulated as follows. We 
assume a simple experimental situation where a subject is presented with a (repeated) series 
of pairs [ai, bi] of pattern from A×B. The subject has to learn to produce the associated  
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element, say bi when the first member ai of the pair is presented. Hence, in this paradigm the 
subject has to learn a predefined relation between a set of input patterns ai and a set of output 
patterns bi. For instance, an input pattern can be a lexigram (e.g. senseless syllable), and an 
output pattern can be a picture of a fruit. We assume a 1–1 correspondence between inputs 
and outputs. 
 If subjects are qualified to match stimulus ai to bi and then, without further training, match 
bi to ai, they have passed a test of symmetry. Passing this test, thus conforms to the 
characteristic of recoverability or bidirectionality in the domain of natural language 
computation. The test of symmetry plays an important role in research on the acquisition of 
functional symbol usage in apes and children. The important empirical finding is that children 
as young as 2 years pass the symmetry test (e.g. Green, 1990). In contrast, chimps did not 
show symmetry: having learned to match lexigram comparisons to object samples, the chimps 
were not able, without further training, to match the same objects now presented as 
comparisons to the corresponding lexigrams, now presented as samples (cf. Dugdale & Lowe, 
2000; Savage-Rumbaugh, 1984).17  
 Using symmetric networks it is very simple to account for recoverability (passing the 
symmetry test) after learning the association ai  bi (assuming a 1-1 correspondence). For 
simplicity, we adopt a localist model with two levels of nodes such that the nodes correspond 
to the pattern ai and bi, respectively. Using the DeMorgan option, this corresponds to a system 
of weighted constraints {[ai ↔ bj: wij], 1 ≤ i,j ≤ N} plus strict inhibitory links within the level 
A and B, respectively: {[ai ↔ ¬aj: ∞],  i≠j}∪{[bi ↔ ¬bj: ∞],  i≠j}. Now it is not difficult to 
show that we can reproduce the list ai  bi for all i if and only if wii > ∑1 ≤ j ≤ N  wij  for each 1 
≤ i ≤ N.  That conforms to getting the inferences ai |≈ PRK bi with the corresponding 
knowledge base PRK. Because of the symmetry of the knowledge base it can be concluded 
that the list can be reproduced in reverse order: bi  ai (i.e. bi |≈ PRK ai). 
 Concluding this section we can say that the DeMorgan option has a series of advantages if 
compared to the Boolean option: (i) it accounts to the idea of underspecification and 
inferential completion; (ii) it helps to improve the performance of the optimization procedure; 
(iii) it provides a conceptually simple and natural solution to the extraction problem; (iv) it 
makes the feature of recoverability transparent.  

6 Optimality Theory and Symmetric Networks 

Optimality theory (OT) was initiated by Prince & Smolensky (1993) as a new phonological 
framework that deals with the interaction of violable constraints. In recent years, OT was the 
subject of lively interest also outside phonology. Students of morphology, syntax and natural 
language interpretation became sensitive to the opportunities and challenges of the new 
framework (e.g. Blutner & Zeevat, 2004). The reasons for linking scientists into this new 
research paradigm is manifold: (i) the aim to decrease the gap between competence and 
performance, (ii) interest in an architecture that is closer to neural networks than to the 
standard symbolist architecture, (iii) the aim to overcome the gap between probabilistic 
models of language and speech and the standard symbolic models, (iv) the logical problem of 
language acquisition, (v) the aim to integrate the synchronic with the diachronic view of 
language.  
 In the present context we emphasize the second motive. OT is deeply rooted in the 
connectionism paradigm of information processing. As a consequence, OT does not assume a 
strict distinction between representation and processing. The development of OT 
                                                 
17 A possible exception is Kanzi, the bonobo monkey. Kanzi’s knowledge was reciprocal. There was no need to 
teach her separately to produce and to comprehend (Savage-Rumbaugh & Lewin, 1994). 
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demonstrates a new and exciting research strategy: augmenting and modifying symbolist 
architecture by integrating insights from connectionism. The development of Penalty Logic is 
another illustration of this strategy.  
 It's not possible to give a systematic introduction into OT here.18 The primary aim of this 
section is to draw attention to the close similarities between OT and the logical approach 
proposed in Sections 4 and 5, but also to point out some significant differences. The main 
difference between OT and numerical theories like Penalty Logic and Harmonic Grammar 
(Smolensky, 1986; 1995) is the shift from numerical to non-numerical constraint satisfaction. 
Why Prince and Smolensky (1993) proposed this shift, is explained by Smolensky 
(Smolensky, 1995: 266) as follows: “Phonological applications of Harmonic Grammar led 
Alan Prince and myself to a remarkable discovery: in a broad set of cases, at least, the relative 
strengths of constraints of constraints need not be specified numerically. For if the 
numerically weighted constraints needed in these cases are ranked from strongest to weakest, 
it turns out that each constraint is stronger than all the weaker constraints combined.” In other 
words, the shift from Harmonic Grammar to Optimality Theory, that means the realization of 
what is called strict dominance of the OT constraints appears to be mainly motivated by 
empirical findings in the domain of phonology.  
 A possible advantage of strict dominance lies in the robustness of processing. Following a 
suggestion of David Rumelhart the following argument was put forward: “Suppose it is 
important for communication that language processing computes global harmony maxima 
fairly reliably, so different speakers are not constantly computing idiosyncratic parses which 
are various local Harmony maxima. Then this puts a (meta-)constraint on the Harmony 
function: it must be such that local maximization algorithms give global maxima with 
reasonably high probability. Strict domination of grammatical constraints appears to satisfy 
this (meta-)constraint.” (Smolensky 1995, note 38: 286).  
 In concord with this argument it is not implausible to assume that the theoretical 
explanation for differences between automatic and controlled psychological processes 
(Schneider & Shiffrin, 1977) can also be seen as an emergent effect of the underlying neural 
computations (cf. Blutner, 2004). Whereas controlled processing relates to the capacity-
limited processing when the global harmony maxima (= global energy minima) are difficult to 
grasp, automatic processing relates to a mode of processing where most local harmony 
maxima are global ones. 
 In order to illustrate the strictness of domination of grammatical constraints I consider a 
small fragment of the vowel system of English (cf. Kean, 1995), which is roughly simplified 
for the present purpose.19 The example rests on a classification of the vowels in terms of the 
binary phonemic features as illustrated in Table 4. 
 

 /a/ /i/ /o/ /u/ /ɔ/ /e/ /æ/
back + – + + + – – 
low + – – – + – + 
high – + – + – – – 
round – – + + + – – 

 
Table 4: Fragment of the vowel system of English and the phonological feature specifications 
 
For the purpose of applying propositional Penalty Logic, the phonological features may be 
represented by the atomic symbols BACK, LOW, HIGH, ROUND. The knowledge of the 

                                                 
18 For good introductions the reader is referred to the literature (e.g. Archangeli & Langendoen, 1997; Kager, 
1999; Smolensky & Legendre, to appear). 
19 I borrow this example from Blutner (2004). 
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phonological agent concerning this fragment may be represented by the following violable 
constraints (usually called markedness conventions)20:  
 
(45) a. VOC ↔BACK ε1 

b. BACK ↔LOW  ε2 
c. BACK ↔∼HIGH ε3 
d. LOW ↔∼ROUND ε4 

 
With regard to the agent's knowledge, the feature specifications in Table 4 are highly 
redundant. It can be shown that only the feature specifications in the grey fields must be 
given, the specification in the remaining fields can be calculated by the agent's knowledge. 
For the proper working of the constraint system in (45) it is required that the constraints are 
ordered in a hierarchical way, with (45a) at top and (45d) at bottom. This hierarchy 
corresponds to a relation of strict domination: one violation of a higher ordered constraint 
cannot be overpowered by arbitrary many violations of lower ordered constraints. The 
technical means of expressing the hierarchy is the use of exponential penalties with a basis 0 
< ε ≤ 0.5. In the present case, ε = ½ or smaller is a proper base since we are concerned with 
binary features which can be applied only once in each case.  
 Table 5 illustrates a sample calculation using an OT tableau. As usual in the OT literature 
a violation of a constraint is indicated by * and the small hand icon is used to mark the 
optimal candidate. In the present case we have only two candidates that satisfy the input's 
conditions for a non-high front vowel. The only free feature corresponds to ±LOW. It resolves 
to –LOW because of the second constraint, which is the highest ranked constraint that 
discriminates the two candidates: it is satisfied for the optimal candidate but violated for the 
other candidate. The optimal candidate distinctively characterizes the vowel /e/. In the last 
column penalties are calculated from the constraint violations assuming penalties εn for 
constraints of rank n  (with ε= ½). 
   

 
Input:  + VOC ∧ –BACK  ∧ –HIGH   

 

 – + – − * * *  0.5550 
 – – – − *  * * 0.5055 

  
BACK 

 

 
LOW 

 

 
HIGH 

 

 
ROUND

 

VOC 
↕ 

BACK 

BACK 
↕ 

LOW 

BACK 
↕ 

∼HIGH 

LOW 
↕ 

∼ROUND 

Penalty 
(ε= ½) 

 
 
Table 5: OT tableau for calculating the optimal non-high front vowel: /e/ 
 
Using the DeMorgan option it is straightforward to translate the constraint system (45) into a 
localist symmetric network as can be seen from Figure 6. 
 
 
 
 
 
 
 

                                                 
20 Further, two hard constraints are needed to express strong redundancies: LOW→¬HIGH; ROUND→BACK. 
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Figure 6: Hopfield network with exponential weights representing the generic knowledge21 of 
a phonological agent  
 
 We conclude that both Penalty Logic and Optimality Theory look for an optimal 
satisfaction of a system of conflicting constraints. Most importantly, the exponential form of 
the penalty function results in strict domination of the constraints, meaning that violations of 
many lower ranked constraints invariably count less than one violation of a higher ranked 
constraint. Moreover, we have seen how constraints that conform to formulae of propositional 
logic can be translated into a symmetric connectionist network by assuming a localist 
interpretation of the atomic symbols.  
 Early proposals to ground OT in connectionist architecture made use of (non-symmetric) 
feedforward networks (cf. Prince & Smolensky, 1993; Smolensky, 1986). However, 
Smolensky & Legendre (to appear) also acknowledged the relevance and power of symmetric 
networks for developing an integrated connectionist/symbolic cognitive architecture. One 
important advantage of symmetric networks is that they give a natural account of the 
emergence of recoverability and bidirectionality.  
 There are two shortcomings with the presented account of reducing OT to connectionist 
networks. The first one concerns the use of a localist interpretation. Though a localist 
interpretation generates a fairly transparent relationship between symbols and node activities, 
this idea is much too naïve to be taken seriously as a promising programme in Cognitive 
Neuroscience. In realistic examples, the relation between the symbolic expressions as used in 
Penalty Logic and the elements of the pre-symbolic product space is much less direct than 
localist Hopfield models suggest. In an outstanding dissertation, Martinez (2004) proposed 
ideas for simultaneously using discrete symbolic means and non-discrete numerical means, 
and she developed tools of relating the two different realms in a much less direct way than 
strictly localist accounts suggest (see also Barwise & Seligman, 1997; Martinez, 2003). I 
think these ideas have a big potential for future accounts for an integrated 
connectionist/symbolic cognitive architecture. 
 The second shortcoming relates to the fact that the constraints we used in the example 
from intrasegmental phonology are micro-constraints in the sense that they are in direct 
correspondence to a very small fragment of the network. In fact, in the case under discussion 
each constraint corresponds to a pair of two linked nodes in the network. It is also 
                                                 
21 The hard constraints mentioned in footnote 20 are not represented in this network. We leave it as an exercise 
for the interested reader to perform the corresponding modifications using the techniques explained in section 5.  

–ε3 

VOC

BACK

LOW
HIGH

–ε4 
ROUND

ε1

ε2
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indispensable to have constraints that correspond to larger parts of a network even when a 
localist interpretation is used. The whole idea of assemblies we mentioned in section 2 
suggests that constraints are distributed over significant parts of the network. Hence, it is 
opportune to propose an extended scheme. In this connection I will introduce the notion of 
macro-constraints. In a first approximation, macro-constraints can be seen as an organized 
congregation of micro-constraints, and they can be considered to constitute innate structure. 
The idea of macro-constraints is closely related to the idea of an abstract genome as 
developed by Smolensky & Legendre (to appear: Chapter 21). In detail, the idea has been 
worked out for basic CV syllable theory.  
 Macro-constraints can be defined as collections of micro-constraints with identical 
penalties. The idea of associating micro-constraints with identical penalties becomes 
appealing when we translate the set of micro-constraints into a neural net. Then identical 
penalties correspond to fixed relationships between certain connection weights in the 
symmetric network. For instance, let's assume a weighted macro-constraint C = {pi ↔ pj, 
i≠j}: w, where w is the penalty associated with all the micro-constraints pi ↔ pj in C. Hence, 
all weights between the nodes i and j in the network are required to be identical and to have 
the value w. Though the penalties can be changed by learning it is assumed that the identity of 
the corresponding weights is not lost over the course of learning. Thus this relationship is 
maintained during learning, although the absolute magnitude of the weights changes as 
particular knowledge is acquired. As a consequence, the relationship between connection 
weights can be considered  to constitute the innate knowledge provided by a constraint (cf. 
Smolensky & Legendre, to appear).   
 Concluding, macro-constraints are essential for two related reasons: (i) they correspond to 
larger parts of the network and constitute assemblies, (ii) they express an innate a relationship, 
which is not influenced by learning. 
 In sections 4 and 5 we have formalized a penalty (penalty/reward) knowledge base as a 
triple <At, ∆, k> where ∆ was a system of propositional expressions (=micro-constraints). 
Now we consider macro-constraints as (non-empty) sets of micro-constraints, and a macro-
knowledge base MK can be defined as a corresponding triple <At, Μ∆, Mk>, where (i) Μ∆ is a 
set of nonempty sets of consistent sentences built on the basis of At; (ii) Mk: Μ∆ ⇒ (0, ∞), the 
penalty function that associates penalties with each macro-constraint. Now the system energy 
of an interpretation ν with regard to a macro-knowledge base MK is defined as follows: 
 

(46) ℰMK(ν) =def  –∑µ∈Μ∆  Mk(µ) ∑δ∈µ  [[δ]] ν 

 
For each macro-knowledge base MK = <At, Μ∆, Mk> we can construct the associated ordinary 
knowledge base K = <At, ∆, k>, where ∆ = ∪ Μ∆ and k(δ) = Mk(µ) if  δ∈µ. It is obvious that 
the system energy (47) of an interpretation with regard to a macro-knowledge base is identical 
to the system energy of an interpretation with regard to the associated ordinary knowledge 
base: ℰMK(ν) = ℰK(ν). The crucial point is that the penalties k(δ) for all micro-constraints δ 
that constitute the macro-constraint µ are identical. Further, it is obvious how to construct the 
symmetric network that corresponds to a macro-knowledge base: build the associated 
ordinary (micro-) knowledge base and translate it into the network using the technique 
explained in sections 4 and 5. 

7 Conclusions: Logic and embodied theories of cognition 

The present contribution can be seen as part of recent efforts to develop an embodied view of 
cognition. The emerging viewpoint of embodied cognition holds that cognitive processes are 
deeply rooted in the body’s interactions with the world (cf. Brooks (1999); Anderson (2003); 
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Lakoff & Johnson (1999); Varela, Thompson, & Rosch (1993)). The idea of embodiment has 
diverse aspects. Several philosophers and cognitive scientist agree that at least the following 
three aspects are of special importance (cf. Anderson, 2003): 
 
• Reductionist aspect: The system must be realised in a coherent, integral 

physical/biological structure. As an immediate consequence, certain features of the 
symbolic system (e.g. the OT Grammar) must be reducible to plausible neural models. 

• Evolutionary aspect: The explanation of the behaviour must include reference to cultural 
evolution. This derives from the observation that intelligence lies less in the individual 
brain and more in the dynamic interaction of brains with the wider world, including 
especially the social and cultural worlds.22 

• Grounding aspect: Symbol-manipulation has to be grounded in non-symbolic function. 
OT constraints are embodied, not disembodied. A symbol is grounded if it has its meaning 
or content by virtue of its causal properties and relations to the referent of the symbol. 
Hence, symbols have to be grounded ultimately in the sensory-motor system or other 
bodily systems or are appropriately defined in terms of grounded symbols. 

 
The research program of embodied cognition is a continuation of the program of situated 
cognition. It is the centrality of the physical grounding project in embodied cognition that 
differentiates these two research programs (cf. Anderson, 2003).  

Taking up the view of embodiment, the present article builds mainly around the 
reductionist aspect of embodiment. What are the central general principles of computation in 
connectionist – abstract neural – networks? How can these principles be reconciled with those 
of symbolic computation? Which basic assumptions of OT can be reduced to connectionist 
computation? And in what case alternate explanations are required? In a nutshell, we can state 
the following main results: 
 
• To overcome the gap between symbolism and connectionism it is useful to view 

symbolism as a high-level description of the properties of (a class of) neural networks. 
The application of algebraic and model-theoretic techniques for a higher-level analysis of 
neural networks (e.g. Balkenius & Gärdenfors, 1991; Blutner, 1997, 2004; Pinkas, 1995) 
and their development in the present paper proves especially valuable when it comes to 
study the concrete link between inferences in symmetric networks and inferences in  
nonmonotonic logic.  

• The foundational issue of OT: The general shape of symbolic OT systems proves to be 
conforming to the penalty-logical treatment proposed in sections 4 and 5. Because of the 
close relations between Penalty Logic and symmetric networks, certain features of 
standard OT appear to be reducible to the basic traits of neural network models. This 
concern first at all the idea of domination: constraint conflict is resolved via a notion of 
differential strength: stronger constraints prevail over weaker ones in cases of conflict.  

• Strictness of domination (hierarchical encoding of constraint strengths): This problem 
matters both from a theoretical and an empirical perspective. In the words of Bechtel, the 
solution to this problem “may create a rapprochement between network models and 
symbolic accounts that triggers an era of dramatic progress in which alignments are found 
and used all the way from the neural level to the cognitive/linguistic level (Bechtel, 2002, 
p.17). Presently, there are only vague ideas about how to account for the strictness of 

                                                 
22 In the domain of linguistics, Jackendoff (2002)makes the following remarkable claim stressing the influence 
of cultural interaction in understanding language: “If some aspects of linguistic behaviour can be predicted from 
more general considerations of the dynamics of communication in a community, rather than from the linguistic 
capacities of individual speakers, then they should be.” (Jackendoff 2002:101). 
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domination and the entailed idea that Grammar (usually) does not count. Moreover, it is 
rather unclear how to give a theoretically satisfying account for explaining under which 
conditions the strict domination of constraints applies and under which conditions it does 
not.  

• The idea of macro-constraints is essential for matching larger parts of a network 
(assembly formation). Further, macro-constraints can be used to express innate 
relationships on symmetric networks – i.e. relationships that aren't controlled by learning. 
 

Standard OT respects the generative legacy in assuming that the universal features of 
language can be explained by assuming a Universal Grammar (UG). UG describes the innate 
knowledge of language that is shared by individual humans. In standard OT, the innate 
knowledge of language consists (a) of a generative device that generates the admissible input-
output pairs and (b) the set of constraints. Language-particular aspects refer to the possible 
rankings of the constraints (e.g. Prince & Smolensky, 1993). Hence, the suggestion of an 
abstract genome (Smolensky & Legendre, to appear) as well as the suggestion of macro-
constraints and the way they constrain symmetric networks nicely fits into this picture. 
 However, recent effort on the problem of the evolution of language in humans (e.g. 
Hurford, 1998; Kirby, 2002; Steels, 1998; Zeevat & Jäger, 2002) made clear that a thorough 
explanation of the universal properties of language cannot be exclusively based on an 
individual's cognitive capacity which is taken to be biologically determined. So, if we want to 
know how and where the universal features of language are specified, it is not sufficient to 
consider only an individual’s competence and how it is derived from primary linguistic data 
via the Language Acquisition Device (LAD). Rather, it is essential to focus on how certain 
hallmarks of human language can arise in the absence of biological change by assuming the 
force of cultural evolution. In explaining the universal properties of language, the 
evolutionary approach is in line with the claims made by proponents of embodied cognitive 
science. Hence, it is our central task to investigate the interaction between biological and 
cultural substrates. The paradigm of iterated learning (e.g. Kirby, 2002; Kirby & Hurford, 
1997) has proven as especially useful in investigating the emerging effects from this 
interaction.  
 Taking the dimension of cultural evolutionary into account suggest that at least some 
principles of OT van be explained as emergent factors of cultural exchange. This concerns, 
first at all the explanation of bias constraints (Zeevat & Jäger, 2002) and the principle of 
constructional iconicity23, which is related to the feature of weak bidirection (Mattausch, 
2004). Hence, naïve OT with its assumption of inborn constraints has to be overcome by an 
embodied OT, which respects the role of grounding constraints by iterated learning. In this 
regard it is important that the mechanism of grounding is directed by mechanisms that are 
very close to those used in modelling evolutionary change (e.g. Boersma, 1998; Hayes, 1996).  
 In this article I have concentrated on the reductionist aspect of embodied cognition – 
certain features of a symbolic system (e.g. the OT Grammar) must be reducible to plausible 
neural models. Though the reductionist programme is an integral part of the embodied 
paradigm it is not the whole story. The evolutionary aspect and the aspect of grounding 
likewise deserve attention. Once more, the feature of situatedness, i.e. dynamic interaction of 
brains with the wider world, including especially the social and cultural worlds, should prove 
promising for future research. 
 

                                                 
23 Constructional iconicity states that there is a harmonic linking between complex semantic contents and 
complex (surface) forms on the one hand and less complex semantic contents and simple forms on the other 
hand. Both in pragmatics and in (natural) morphology the principle plays an important role in describing the 
direction of language change. In formal semantics, this principle is called division of pragmatic labour  (Horn, 
1984); in the school of „natural morphology“ it is called constructional iconicity (Wurzel, 1998). 
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