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Abstract: We present an account of semantics that is not construed as a mapping of language to the 

world, but mapping between individual meaning spaces. The meanings of linguistic entities are 

established via a “meeting of minds.” The concepts in the minds of communicating individuals are 

modeled as convex regions in conceptual spaces. We outline a mathematical framework based on 

fixpoints in continuous mappings between conceptual spaces that can be used to model such a 

semantics. If concepts are convex, it will in general be possible for the interactors to agree on a 

joint meaning even if they start out from different representational spaces. Furthermore, we show 

by some examples that the approach helps explaining the semantic processes involved in the 

composition of expressions. 
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1. Introduction 

Within traditional philosophy of language, a semantics is seen as a mapping between a 

language and the world (or several “possible worlds”). This view has severe problems. For 

one thing, it does not involve the users of the language. In particular, it does not tell us 

anything about how individual user can “grasp” the meanings determined by such a mapping 

(Harnad 1990, Gärdenfors 1997). Another tradition, cognitive semantics, brings in the 

language user by focusing on the relations between linguistic expressions and the user’s 

mental representation of the meanings of the expressions, often in form of “image schemas.” 

However, cognitive semantics has problems in explaining the social nature of semantics.  

In this article, we propose a radically different view of semantics based on a “meeting of 

minds.” According to this view, the meanings of expressions do not reside in the world or 

solely in the mental schemes of individual users, but they emerge from the communicative 

interactions between the language users. The fundamental role of human communication is 

indeed to affect the states of mind of others. A meeting of the minds means that the 

representations in the minds of the communicators will become sufficiently compatible. 

As an example of how a meeting of minds can be achieved by communication, but without 

the aid of language, let us consider declarative pointing (Bates 1976, Brinck 2004, Gärdenfors 

and Warglien to appear). This act consists of one individual pointing to an object or spatial 

location and at the same time checking that the other individual (the “recipient”) focuses his 

or her attention on the same object or location. The recipient in turn must check that the 

pointer notices that the recipient attends to the right entity. This attending to each others’ 

attention is called “joint attention” (Tomasello 1999) and it is a good, but fallible, mechanism 

for checking that the minds of the interactors meet in focusing on the same entity. In passing, 
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note that pointing, unlike language, is a continuous way of referring to the outer world (the 

direction of the finger is continuously variable). 

As a matter of fact, achieving joint attention can be seen as reaching a fixpoint in 

communication. When my picture of what I point out to you agrees with my image of what 

you are attending to, my communicative intent is in equilibrium. Conversely, when what you 

attend to agrees with your image of what I want to point out to you, your understanding is in 

equilibrium (Gärdenfors and Warglien to appear).1  

When the interactors are communicating about the external world, pointing is sufficient to 

make minds meet on a referent. However, when the interactors need to share referents in their 

inner mental spaces a more advanced tool is required. This is where language proves it mettle 

(Brinck and Gärdenfors 2003, Gärdenfors 2003, Gärdenfors and Osvath, to appear). In a 

sense, language is a tool for reaching joint attention in our inner worlds. As a matter of fact, 

Goldin-Meadow (2007, p. 741) goes beyond our metaphorical assertion and writes that in 

children “pointing gestures form the platform on which linguistic communication rests and 

thus lay the groundwork for later language learning.” 

We shall assume that our inner worlds can be modeled as spaces with topological and 

geometric structure. Here we will use conceptual spaces (Gärdenfors 2000) as the main 

modeling tools. The mental space that carries the meanings for a particular individual is partly 

determined from the individual’s interaction with the world, partly from her interaction with 

others and partly from her interaction with herself (e.g. in the form of self-reflection). This 

view does not entail that different individuals mean the same thing by using an expression, 

only that their communication is sufficiently successful.  

                                                 
1 Two features of this process should be noted: Firstly, joint attention requires a “theory of mind” that includes 
second order attention, in the sense that both communicative partners can attend to the attention of the other. 
Secondly, the two partners need not have the same image of each others’ inner state: It is perfectly possible to 
reach joint attention without my picture of your attention being aligned with your attention. In other words, joint 
attention never requires leaving the subjective realms of the communicative partners. 
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As a comparison, consider the models of cognitive semantics (see e.g. Lakoff 1987, 

Langacker 1986, 1987, Croft and Cruse 2004, Evans 2006) where image schemas have been 

core carriers of meaning. An image schema is a conceptual structure that belongs to a 

particular individual. However, the mathematical structures of the image schemas are seldom 

spelled out.2 To do this, it is natural to work with topological and geometric notions. 

The image schemas of cognitive semantics are in general presented as structures that are 

common to all speakers of a language. However, in the socio-cognitive type of semantics we 

model in this paper, we do not assume that everybody has the same meaning space, but only 

that there exist well-behaved mappings between the meaning spaces of different individuals – 

“well-behaved” in the sense that the mappings have certain mathematical properties (to be 

specified below). 

Our modeling takes a lot of inspiration from the communication games that have been studied 

by Lewis (1969, 1979), Stalnaker (1979) and others (e.g. Schelling (1960), Clark (1992), 

Skyrms (1998), Parikh (2000)). To this tradition we are adding some assumptions about the 

topological and geometric structure of the individual mental spaces that will allow us to 

specify more substantially how the semantics emerges and what properties it has. Linguistic 

acts are best seen as moves in such games. The players in a communication game have 

different payoff functions, but we also accept that they may have different individual meaning 

spaces. Indeed, we shall show that semantic equilibria can exist without assuming that the 

communicating individuals have the same mental spaces. 

As long as communication is conceived as a process through which the mental state of an 

individual affects the mental state of another one, a “meeting of the minds” is a condition in 

which both individuals find themselves in compatible states of mind that do not require 

further processing. Just like bargainers shake hands after reaching an agreement on the terms 

                                                 
2 For an early computational model, see Holmqvist (1993). 
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of a contract, speakers may reach a point in which both believe they have understood what 

they are talking about. Of course, they may actually mean different things, just like the terms 

of a contract might prove to be interpreted differently by the bargainers. But it is enough that, 

in a given moment and a given context, speakers may reach a point in which they feel there is 

a mutual understanding – no matter whether mutual agreement implies or not that they mean 

the same thing. 

A very common mathematical way to define such kind of state would be to identify it as a 

fixpoint. A fixpoint x* of a function f(x) is a point in which the function maps x* on itself 

(f(x*) = x*). But what kind of object is a function that reaches a fixpoint when minds agree? 

In linguistic communication, the most natural candidate for such a semantics is a function that 

maps language expressions on mental states, and vice-versa – a kind of interpretation function 

and its inverse expression function. So, in our framework minds meet when the interpretation 

function mapping states of mind on states of mind via language finds a resting point – a 

fixpoint.3  

To provide a simple example of convergence to a fixpoint as a meeting of mind, let us return 

to the previous example about achieving joint attention via pointing, for example a child 

pointing out something to an adult. The individual mental spaces are in this case taken to be 

their visual fields (which may only partially overlap). The goal of the pointing is to make the 

adult react by looking at the desired point the visual field. The fixpoint is reached when the 

child sees that the adult’s attention is directed at the correct point and the adult believes that 

her attention is directed to what is pointed at (see figure 1). More precisely, the fixpoint is 

characterized by four properties: (1) the attended object is on my line of gaze; (2) the attended 

object is on your line of gaze; (3) I see that your line of gaze has the right direction; and (4) 

                                                 
3 An analogy is that communication is like a dog on a leash pulling a human towards something the dog has in 
mind. The dog will pull and its master will follow and until an equilibrium is reached. The place where they stop 
is literally a fixpoint. 
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you see that my line of gaze is in the right direction.4 Thus our gazing lines intersect in 

correspondence of the object, and our representations of the other gaze are consistent with 

such effective gazes.  

 

Figure 1: Joint attention as a fixpoint 

Using fixpoints is, of course, not new to semantics. The semantics of programming languages 

often resort to fixpoints to define the “meaning” of a program: its meaning is where the 

program will stop (for a remarkable review, see Fitting 2002). In a different vein, Kripke’s 

(1975) theory of truth is grounded on the notion of a fixpoint – in his case the fixpoints of a 

semantic evaluation function are at the focus of his interest. Fixpoints are also crucial in other 

fields, such as the study of semantic memory: content-addressable memories usually store 

information as a fixpoint of a memory update process (the canonical example being Hopfield 

neural net, see Hopfield 1982). 

However, here we make a fairly different use of the fixpoint notion to define our “meeting of 

minds” semantics: We consider the fixpoints of an interactive, social process of meaning 

                                                 
4 In fact what we observe is that the gaze of the other has the right angle. From that we calculate that the line of 
gaze has the right direction. The important fact to note is that this calculation involves a shift of perspective. For 
example when a child follows the gaze of somebody that focuses on a point outside its own visual field, it has to 
form an allocentric representation of the space. In general this can be modelled via a coordinate transformation 
together with an unlimited extension of the space. 
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construction and evaluation. From this point of view, our use of fixpoints resembles more the 

one made by game theorists to define equilibrium states of mutual compatibility of individual 

strategies. Furthermore, our fixpoints are of a topological nature, while those most used in 

computation and logics exploit properties of monotone functions on (partially) ordered 

structures. 

Our argument is that some types of topological and geometric properties of mental 

representations afford meetings of minds, because they lend more naturally fixpoints to 

communication activities. Following Gärdenfors (2000), concepts will be represented as 

convex regions of mental spaces (see next section). Thus, we shift from the conventional 

emphasis on the way we share the same concepts to an emphasis on the way the “shapes” of 

our conceptual structures make it possible for us to find a point of convergence. A parallel 

with the pragmatics of conversation in the Gricean tradition comes to the mind: Just like 

maxims of conversation ensure that talk exchanges find a mutually accepted direction, we 

explore the complementary notion that the way we shape our concepts deeply affects the 

effectiveness of communication. 

On this ground, we make an implicit selection argument: just like wheels are round because 

they make transportation efficient, we expect to identify the shapes of concepts that are 

selected to make communication smooth and memorizing efficient. As we will see, the 

convexity and compactness of concepts play central roles. In this way, constraints over the 

structure of concepts facilitate creation of coordinated meanings. In brief, our point is that 

communication works as long as it preserves the structure of concepts. This will later lead us 

to consider the role of continuous mappings in conveying similarity of meanings. An 

important point that we will elaborate in section 3.2, is that the preservation of similarities can 

be performed by a discrete system, to wit, the expressions of natural language. In this paper, 
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we will focus on noun phrases and indexical expression, but our approach can be extended to 

other linguistic categories.5 

2. The topology of conceptual spaces 

It turns out that structural properties of conceptual representations that grant the existence of 

meetings of minds are to a large extent already familiar to cognitive semantics and in 

particular to the theory of conceptual spaces. These basic properties are the metric structure 

induced by similarity, the closed/bounded nature of concepts, convexity of conceptual 

representation, and the assumption that natural language, with all its resources, can “translate” 

(spatial) mental representations with reasonable approximation. In what follows, we will 

make more precise these notions and the role they play in a “meeting of minds” semantics 

theory. 

Our first step is to assume, following Gärdenfors (2000), that conceptual spaces are construed 

out of primitive quality dimensions (often rooted in sensorial experience) and that similarity 

provides the basic metric structure to such spaces. The dimensions represent various 

“qualities” (color, shape, weight, size, position, etc) of objects in different domains.6  

To be more precise, we recall that a metric space is a set of points with a measure of the 

degree of closeness (or distance) between such points. A metrizable topological space is a 

space whose topological structure is induced by some metric. Thus, our fundamental 

assumption is that conceptual spaces are metrizable, and that their specific metric structure is 

induced by a similarity relation. This leaves open the way to many different metric structures. 

While the nature of psychologically sound similarity measures is still highly controversial 

(and presumably differs between domains), numerous studies (Shepard 1987, Nosofsky 1988) 

suggest that it is a continuous function of Euclidean distance in the conceptual spaces. 

                                                 
5 For some ideas on how verbs may be analysed, see Gärdenfors (to appear). 
6 It should be noted that conceptual spaces are used to represent relations between different concepts, which is 
more general than the use of space in representing single image schemas within cognitive semantics. 



09-05-05 

 9 

Consequently, we will assume, as a first approximation, that conceptual spaces can be 

modeled as Euclidean spaces. However, the general ideas may be extended to other metric 

structures (see e.g. Johannesson (2002)). 

Following Gärdenfors (2000), we define concepts as regions of a conceptual space. Two 

properties of such regions are worth mentioning here. First, as long as given concepts are 

closed and bounded regions of Euclidean conceptual spaces, they acquire (by a corollary of 

the classical Bolzano-Weierstrass theorem) one more crucial topological property: 

compactness. One intuition underlying the compactness topological property is that it 

provides “enough” points that are near to a set – this proves to be a crucial property when 

fixpoints have to be defined. Furthermore, compactness allows approximating the whole 

space through a finite number of points, another property that will turn out to be fundamental 

in what follows. 

Second, Gärdenfors (2000) proposed that concepts should be modeled as convex regions of a 

conceptual space. While convexity may seem a strong assumption, it is a remarkably regular 

property of many conceptual representations grounded in perception (e.g., color, taste, 

vowels) (Jäger 2007). The main argument for convexity in Gärdenfors (2000) was that it 

facilitates the learnability of concepts. Here we will argue that convexity is also crucial for 

assuring the effectiveness of communication. Although we will in this paper take individual 

concepts as given, clearly learnability and effectiveness of communication do interact in 

complementary ways in the process of acquiring individuals concepts. 

There are interesting connections between analyzing concepts as convex regions and the 

prototype theory developed by Rosch and her collaborators (see, for example, Rosch 1975, 

1978, Mervis and Rosch 1981, Lakoff 1987). When concepts are defined as convex regions of 

a conceptual space, prototype effects are indeed to be expected. In a convex region one can 
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describe positions as being more or less central. In particular, in a Euclidean space one can 

calculate the centre of gravity of a region. 

It is possible to argue in the converse direction too and show that if prototype theory is 

adopted, then the representation of concepts as convex regions is to be expected. Assume that 

some quality dimensions of a conceptual space are given, for example the dimensions of color 

space, and that we want to decompose it into a number of categories, for example color 

concepts.7 If we start from a set of prototypes p1, ..., pn of the concepts, for example the focal 

colors, then these should be the central points in the concepts they represent. The information 

about prototypes can be used to generate concepts by stipulating that any point p belongs to 

the same concept as the closest prototype pi. It can be shown that this rule will generate a 

decomposition of the space – the so-called Voronoi tessellation. An illustration of the 

Voronoi tessellation is given in figure 2. The illustration is two-dimensional, but the 

tessellation can be extended to an arbitrary number of dimensions. 

 

Figure 2. Voronoi tessellation of the plane into convex sets. 

                                                 
7 Since borders of neighboring regions simultaneously belong to each such region, we call it a decomposition 
and not a partitioning. This preserves the compactness of the regions. 
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The basic assumption is that the most typical meaning of a word or a linguistic expression is 

the prototype of the convex region assigned to the word.8 This mechanism is a very central 

principle in connecting the continuity of mental spaces and the discreteness of language. 

A crucial property of the Voronoi tessellation of a conceptual space is that it always results in 

a decomposition of the space into convex regions (see Okabe, Boots and Sugihara 1992). In 

this way, the Voronoi tessellation provides a constructive geometric answer to how a 

similarity measure together with a set of prototypes determine a set of categories. 

The Voronoi diagram has a dual, the so-called Delaunay triangulation, which will turn out to 

be useful in the sequel (Okabe, Boots and Sugihara 1992). The Delaunay triangulation is 

obtained by connecting two prototypes of cells that share a side by a line segment. Barring 

special cases, this procedure will result in a triangulation of the space (in the special cases, it 

can easily be extended to a triangulation). An important property of the triangulation is that 

contiguous prototypes will be connected. Furthermore, triangulations of convex sets play a 

special role in the approximation of continuous functions, as we will show later. 

               

Figure 3. Delaunay triangulation (continuous lines) relative to a Voronoi diagram (dashed lines). 

                                                 
8 In Gärdenfors (2000), it is argued that the region assigned to a linguistic expression may not be constant, but is 
in general dependent on the context of the use of the expression. 
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Euclidean metrics, compactness and convexity set the stage for our fixpoint argument. But 

before getting there, a last point must be made briefly. A basic tenet of cognitive semantics is 

that language can preserve the spatial structure of concepts. One way to express this is that 

language can preserve the neighborhood relations among points of conceptual spaces. In 

topology, a neighborhood preserving function is nothing but a continuous function. In other 

words, assuming that language can preserve neighborhood relations of conceptual spaces 

implies assuming that language can establish a continuous mapping between mental spaces of 

different individuals – and, as we shall see, a continuous mapping of the product space of 

individual mental spaces on itself. While this continuity assumption may seem extreme, it 

basically says that natural language must have enough plasticity to map neighborhoods of 

points in a conceptual space on neighborhoods of points in another conceptual space. 

Furthermore, we will show below that this assumption can be relaxed to assume that such 

continuous mappings can be suitably approximated. 

3. Fixpoints 

3.1 Existence 

In our previous example concerning pointing, we assumed that the communicators shared 

more or less the same mental space – in these cases it was visual space. However, in the 

general setting, individuals will have different mental spaces. For simplicity let us assume that 

there are only two individuals with mental spaces C1 and C2, which we assume to be convex 

and compact. If I communicate with you, I alter your state of mind and your reaction will 

change my state of mind.9 So communication can be described with the help of “semantic 

reaction functions” from (x1,x2) to (y1,y2) in the product space C = C1×C2. We assume that 

reaction functions are continuous, that is, small changes in the communication will result in 

small changes of the reaction. In section 3.3, we will provide an explicit example of this 

                                                 
9 Note that at this stage, we are not modeling communication as such, only its effects on the mental spaces. 
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general mechanism. A fixpoint is now a point (x1
*,x2

*) where nobody changes his own state of 

mind. 

As an elementary example, we can take the case of pointing and let C1 and C2 be the visual 

spaces of two individuals 1 and 2. In the simplest case, the reaction function starts from 

(x1,x2), where x1 is the point to which 1 is pointing and x2 is the current position of 1, which  2 

is attending to see the pointing direction of 1. The semantic reaction function will map (x1,x2)  

to (x1,x1), which means that 2 is following 1’s line of gaze to the point x1. The resulting 

fixpoint is the one in which 1 and 2 attend to the same object. 

 Now all ingredients are there, and we can simply remind you of one of the most fundamental 

results of analysis, Brouwer’s (1910) theorem: each continuous map of a convex, compact set 

on itself has at least one fixpoint. In the present context, the continuous map we are concerned 

is the semantic reaction function mapping the product space C onto C. In general, C can be 

the product of several individual spaces (and not just two). Figure 4a illustrates the fixpoint 

theorem for a function of a one-dimensional space in itself, and figure 4b shows the necessity 

of the continuity assumption. 

                 

     (a)                 (b) 

Figure 4. (a) The fixpoint illustrated for a one-dimensional space  

(b) Fixpoints may not exist if the function is not continuous. 

Det går inte att visa bilden. Det finns inte tillräckligt med ledigt minne för att kunna öppna bilden eller så är bilden skadad. Starta om datorn och öppna sedan filen igen. Om det röda X:et fortfarande visas måste du kanske ta bort bilden och sedan infoga den igen.
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This result basically tells us that, no matter what is the content of individual mental 

representations, provided that such representations are “well shaped” and that language is 

plastic enough to preserve the spatial structure of concepts, there will always be at least one 

point representing a “meeting of minds.” 

So far we have not mentioned the role of language in how fixpoints are reached. Since we are 

not telepathic, the mapping between individual conceptual spaces must be mediated. 

Language is the primary mediator (but also gestures and other visual tools can be used). 

Using language means that the speaker maps his mental space on some linguistic entities 

(from a language L) and that the hearer in turn maps these expressions on his mental space. 

Communicating linguistically between two individuals, with a product mental space C1×C2, is 

a composition of a function from C1 to L and a function from L to C2. This composition 

results in a modification of C2, that is, a change of the hearer’s mind. To put it simply, a 

linguistic message results in a change from (x1,x2) to (x1,y2) in the product space.10 Similarly, 

when the hearer responds the mapping from C1 via L to C2 results in a move from (x1,y2) to 

(y1,y2) in the product space. 

 

Figure 5: A semantic reaction function maps points in C1×C2 to C1×C2 via L (fe is the expression function and 

fi is the interpretation function). 

                                                 
10 Actually x1 is altered too, since the expectations of the speaker changes as well, in particular if individual 1 
has a “theory of mind” and can predict the listeners reactions. 
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Brouwer’s result depends on the reaction function being continuous. What is the meaning of 

continuity in the communication context? It is important to remember that the mental spaces 

of the communicators are based on similarity that provides them with the metric structure. 

Thus, in mental spaces “close to” means “similar to”. Continuity has a well-known 

neighborhood-preserving property, which in our framework becomes similarity preserving. In 

brief, langue is presumed to preserve similarity in mental spaces. 

The mapping from C1 to C2 need not go via a discrete language (verbal or signed), but other 

kinds of communicative means can be utilized, such as gestures, mimics and other visual 

tools. Using these means, we can actually construct continuous functions between the spaces. 

How the specific shape of such continuous function is construed will depend on a variety of 

pragmatic factors. 

After this short and very informal mathematical detour, our central claim should become 

apparent: Whenever the facility to reach a meeting of minds matters, convex mental 

representations provide a background over which language can deploy most of its power. We 

see this as an indirect explanation of why concepts are in general convex. Please note that we 

are not claiming that convex representations are “faithful” representations of the world – we 

just claim that since they are effective one should find them quite widespread. In fact, our 

claim implies that one should expect to find convex representations even in cases in which 

they are biased representations of the world: Seeing a non-convex world with convex 

spectacles might be a peculiar bias arising from selective pressures towards effective 

communication. 

3.2 Approximations of continuous functions 

Brouwer’s theorem shows the existence of fixpoints for any continuous function mapping a 

compact and convex space on itself. Cognitively, such a function is difficult to manage in 

terms of requirements on memory and communication systems. In particular, our claim that 



09-05-05 

 16 

the semantic reaction function is continuous seems at odds with the discreteness of language 

resources. 

To establish that there is no real conflict between the geometric nature of meanings and the 

discrete one of language (in particular of lexical resources), we will now briefly resort to a 

fundamental result of algebraic topology, showing that any continuous function between two 

Euclidean spaces can be approximated by a mapping between the vertices of some 

appropriate triangulation of the spaces. The result is a great economy in the cognitive 

resources needed to memorize and process such function. As we will show, the approximation 

may boil down to remembering and communicating about the prototypes of a Voronoi 

decomposition of the space. Such an approximation can thus serve as a bridge between the 

discreteness of language and the continuity of the (semantic) reaction function. 

The basic idea can be stated quite simply, but requires some preliminary definitions.11 Let X 

be a convex compact set in a Euclidean space C . A triangulation K of X is a decomposition of 

such set in a finite set of simplexes, where a simplex is the set of convex combinations of n 

independent points in some m-dimensional Euclidean space (basically, it is an m–dimensional 

generalization of a triangle). The triangulation further requires that two simplexes meet at (at 

maximum) one face or edge. The combinatorial structure thus generated constitutes what is 

called a geometric simplicial complex. While a geometric simplicial complex is not by itself a 

topological space, its points, topologized as a subspace of C, are a topological space, the 

polyhedron |K|. A simplicial map f: |K|→|L| between two polyhedra |K| and |L| is a function 

that maps vertices of |K| to vertices of |L|, and preserves simplexes - in other words, if a0, a1, 

... an are the vertices a simplex in K, then f(a0), f(a1), ... f(an) are vertices of a simplex in L 

(notice that f(a0), f(a1), ... f(an) need not be all different points – repetition is allowed). Fig. 6a 

provides a simple illustration. Furthermore, it is required that if x is a convex combination of 
                                                 
11 Here we only sketch the essential concepts. Any algebraic topology handbook will provide a more detailed 
treatment of the subject. We follow the presentation in Maunder (1980). 
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a0, a1, ... an, then f(x) must be a convex combination of f(a0), f(a1), ... f(an). It can be shown 

that f is continuous.  

Clearly a simplicial map is a “simplex preserving” map. Yet, there is another very important 

property of simplicial maps. Given two convex, compact sets X and Y and a continuous 

function g:X→Y, there will always be a simplicial map f that approximates g, provided that X 

and Y can be triangulated at a sufficiently fine grain. By “f approximates g” it is meant that f 

is homotopic to g, or in plain words that g can be obtained from a continuous deformation of f 

This result is known as the simplicial approximation theorem. In fact, the theorem tells that 

any continuous map can be approximated by a piecewise linear map – fig. 6b provides an 

elementary example in which both X and Y are one-dimensional sets. An important fact is 

that the simplicial map f will preserve the fixpoint properties of g, and can be actually used to 

approximate the fixpoints of g (see once more fig. 6b for an illustration). 

  

Figure 6: (a) mapping triangulation. (b) a piecewise linear approximation of a one-dimensional function. 

As we have already seen, Voronoi tessellations provide a simple model of how categorization 

subdivides a conceptual space into convex sets. We have also seen that the Voronoi diagram 

has a dual, which is a set of triangles generated by joining contiguous prototypes, that is, the 

Delaunay triangulation. This suggests that prototypes generate a basic triangulation of 

conceptual spaces in which they play the role of simplicial vertices. A natural interpretation is 

that the prototypes can provide the building blocks of a simplicial approximation of a 
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continuous map between mental spaces. The correspondence between prototypes and words 

(or other lexical elements) then explains how language can serve as a mediator between 

conceptual spaces, approximating a continuous function. 

An important mathematical proviso concerning simplicial approximation is that, as seen 

above, it is not always possible to achieve such an approximation between two triangulated 

spaces, if it is not possible to further triangulate such spaces. In other words, the grain of the 

triangulation of the spaces may be insufficient to grant a simplicial approximation. 

Interestingly enough, human cognitive systems of categories have different levels of 

granularity, corresponding to different levels of prototypes (Rosch 1975, 1978). Thus moving 

across levels of categorization may ensure that finer triangulations can be constructed in order 

to achieve a simplicial approximation. Furthermore, just like categories can be refined 

“locally,” it is not necessary to further triangulate all simplexes of a simplicial complex to 

achieve the required degree of decomposition. In fact, given a complex K, one can leave 

unchanged a subcomplex P and further triangulate the remaining subcomplex – generating 

what is called a subdivision relative to P.12  

The upshot is that the mechanisms of language and linguistic categorization are sufficient to 

approximate continuity with economic means of discretization. It should be noted that the 

convexity of spaces plays two important roles here: It ensures triangulability and it allows 

reconstructing the behavior of approximated function as convex combination of the values of 

the approximated function in the correspondences of vertices (see figure 6). 

3.3 Example: A coordination language game 

Brouwer’s theorem and the extension by simplicial approximations provide us with an 

existence result that guarantees that an appropriate meeting of minds can be found among a 

set of communicators that have convex and compact mental representations of meaning. 
                                                 
12 See Maunder (1980), section 2.5.7.  



09-05-05 

 19 

However, the results do not in themselves say very much about the contents of the fixpoint or 

how it can be reached. 

Jäger and van Rooij (2007) provide an example of how a meeting of minds functions. Their 

domain is the color space and the problem they approach is how a common meaning for color 

terms can develop in a communication game. In their example, there are only two players: s 

(signaler) and r (receiver). Jäger and van Rooij assume that the two players have a common 

conceptual space C for color. They define the space as a “continuous space” but from their 

following claims, it clearly must be a compact and convex space, such as a color circle or a 

color spindle. There is also a fixed and finite set M of n messages that the signaler can convey 

to the receiver. The color space C can also be interpreted as a state space from which Nature 

draws points according to some continuous distribution p. The signaler can choose a 

decomposition S of the space C in n subsets assigning to each color a unique message. The 

receiver can choose where to locate n points, corresponding to the meaning assigned to each 

of the n messages by the signaler. 

The goal of the communication game is to maximize the average similarity between the 

intention of the signaler and the interpretation of the receiver. The communication game 

unfolds as follows: Nature chooses some point in the color space, according to some fixed 

probability distribution. The signaler s knows the choice of nature, but the receiver r does not. 

Then s is allowed to send one of the messages to r. The receiver r in turn picks a point in the 

color space. In the game, s and r maximize utility if they maximize the similarity between 

nature’s choice and r’s “interpretation.” Here is it only assumed that the similarity is a 

monotonically decreasing function of the distance in the color space between nature’s choice 

and r’s choice. 

A Nash equilibrium of the game is a pair (S*, R*), where S* is the sender’s decomposition (in 

n subsets) of C and R* is the responder’s n-tuple of points of C, such that both are a best 
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response to each other. Jäger and van Rooij (2007) show how to compute the best response 

functions for each player. The central result of their paper can be restated by saying that if the 

color space is convex and compact and the probability and similarity functions are 

continuous, then there exists a Nash equilibrium, and it corresponds to a common Voronoi 

tessellation of the color space (which results in convex subsets). 

They also show how, in a simplified evolutionary simulation of the game, discrete 

approximations of convex color regions can emerge as the evolutionary stable solutions of the 

game. Jäger and van Rooij’s model is also interesting because it provides an illustration of 

how a discrete system of signs (there are only n signs in their communication game) can give 

rise to approximations of continuous functions mapping agents’ mental representations on 

themselves. In their example, signs define an array of locations in the color space, and the 

“best response function” of s and r continuously maps configurations of such an array of 

points as responses to decompositions of C, and vice versa. In this language game, “language” 

has to be plastic enough to grant the continuity of the best response function, and the meaning 

space C must have enough topological structure to afford the existence of fixpoints. Language 

plasticity is given here by the possibility to continuously deform the decomposition S and the 

location of the points of R. 

Notice that adding new signs would only involve local changes in the Voronoi tessellation. In 

other words, you do not have to revise all linguistic meanings each time you learn a new 

word. 

4. Compositionality 

4.1 Direct composition 

A fundamental semantic property is that of compositionality. On a general level, 

compositionality directly emerges from our framework of space and functions. To give a 
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trivial example, the meaning of “blue rectangle” is defined as the region which is the 

Cartesian product of the “blue” region of color space and the “rectangle” region of shape 

space (which we leave undefined here13). A noteworthy property is that the product of 

compact and convex sets is again a compact and convex set. Thus the structural properties of 

conceptual spaces are preserved under this basic semantic composition operator. 

This product construction not only preserves topological properties but also the continuity of 

functions, in the sense that if functions f: A→X and g: B→Y are both continuous, then the 

product function h = (f,g): A×B→X×Y is continuous. Furthermore, the composition of 

continuous functions (gof) is again continuous. This allows us to concatenate functions 

preserving their basic properties.14 

Conversely, the “blue rectangle” conceptual region can be decomposed into its generating 

regions “blue” and “rectangle” via projection (which in turn is a continuous function) from 

the product space to its component spaces. Once again, the compactness and convexity of 

“blue rectangle” region are preserved under projection.  

 

Figure 7: Projection on the color dimension. 

Recursively, one can create composite concepts that preserve the basic topological properties 

of conceptual spaces, thus constructing ever richer concepts. On the other hand, there is a 
                                                 
13 For an analysis, se Gärdenfors (2000), section 3.10.1. 
14 Although in a totally different sprit, Lewis (1970) uses compositionality of functions to analyse various 
linguistic categories. 
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lower bound to decomposition via projection. Either the projection is one-dimensional, where 

no further projection makes sense, or the projection is an integral set of dimensions, which we 

will call a domain.15 For example, an object cannot be given a hue without also giving it 

brightness value. A domain is indecomposable in the sense that it cannot be reconstructed as 

the product of lower dimensional projections. 

The proposed analysis of compositionality of meanings is not exactly the same as the classical 

Fregean notion. Traditionally, compositionality is defined as composing the meaning of 

words or expressions, while our analysis is generated from the composition of domains and 

functions. Since each domain is associated with a class of words, e.g. the class of color words, 

composing domains generates a composite conceptual space. From this the meanings of the 

composite expressions can be located as regions of the composite space. 

This general presentation of compositionality implicitly assumes that the domains of the 

product constructions are independent. However, the reality of linguistic usage shows that 

that the spaces associated with composite expression are not totally independent, but some 

preprocessing must take place before they can be properly composed. As an example of some 

types of preprocessing, we will consider some cases of modifier-head composition. 

4.2 Modifier – head composition 

In the simplest cases, such as “blue rectangle”, where “blue” is the modifier and “rectangle” is 

the head, the two associated domains color and shape can be assumed to be independent. 

However, this is a rare case in actual language use. In general, our knowledge of the space 

associated with the head may affect our representation of the modifier. Thus white wine is not 

white, a large squirrel is not a large animal and a thick forest does not compare to thick hair. 

                                                 
15 The notion of integral dimensions and their connection to domains are presented in Gärdenfors (2000), section 
1.8. 
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In all those cases, there seems to be some preprocessing of the representation of the modifier 

space to adapt it to our knowledge of the head space.16 

As an example of that some properties cannot be defined independently of other properties, 

consider ”tall.” This property is connected to the height dimension, but cannot be identified 

with a region in this dimension. To see the difficulty, note that a chihuahua is a dog, but a tall 

chihuahua is not a tall dog. This property presumes some contrast class given by some other 

property, since things are not tall in themselves but only in relation to some given class of 

things. Tallness itself is determined with the aid of the height dimension. For a given contrast 

class Y, say the class of dogs, the region H(Y) of possible heights of the objects in Y can be 

determined. An object can then be said to be a tall Y if it belongs to the “upper” part of the 

region H(Y). 

For a contrast class such as skin color, one can map out the possible colors on the color 

spindle. This mapping will determine a subset of the full color space. Now, if the subset is 

completed to a space with the same geometry as the full color space, one obtains a picture that 

looks like figure 8. 

In this smaller spindle, the color words are then used in the same way as in the full space, 

even if the hues of the color in the smaller space don't match the hues of the complete space. 

Thus, “white” is used about the lightest forms of skin, even though white skin is pinkish, 

“black” refers to the darkest form of skin, even though black skin is brown, etc. 

                                                 
16 It is not the head, but rather the “modifier” that is modified before the composition of meanings takes place. 
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Figure 8: The subspace of skin colors embedded in the full color spindle (from Gärdenfors 2000, p. 121). 

Once the head and modifier spaces are compact and convex regions of metric spaces, there 

always exists a way of rescaling the distances of the modifier space to fit with the constraints 

of the head space in a one-one correspondence. In this way all color words will be available to 

characterize the color of skins. The concept of gauge (also known as Minkovski functional) 

provides a natural bridge to model such contextual rescaling effect (Berge 1997). A gauge of 

a convex set (with an interior point 0 taken as the origo) is a generalized numeric function j 

defined as: 

j(x) = inf{t: t>0, x ∈ tC} if x ∈ tC for at least one t>0 (where tC is C inflated by the 

factor t); 

j(x) = ∞ otherwise 

It is easily seen that if x ∈ C, j(x) ≤1 (and, in particular j(x) =1 if x is on the boundary of the 

set). 
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Consider two convex sets, C and D, both defined within a space X, with a common interior 

point 0 (taken arbitrarily as the origo). Let j and k be gauge functions for, respectively, C and 

D. One can define the following function  σ: X→X: 

€ 

y =σ(x) =
j(x)
k(x)
 

 
 

 

 
 x   

Such function (called radial projection) establishes a correspondence between each point of C 

and a corresponding point in D: 

€ 

k(y) = k j(x)
k(x)
 

  
 

  
x =

j(x)
k(x)

k(x) = j(x) 

Figure 9 shows an example of correspondence between points on the boundaries (x0 and y0), 

and between points in the interior (x and y). 

 

Figure 9: Radial projection. 

It can be shown that radial projection establishes an homeomorphism between two convex 

sets – as long as two sets are convex and compact and have a common interior point, such 

homeomorphism always exists (Berge 1997, p. 167). 

This construction allows us to formulate a general principle: If the region of the space 

representing the head contains a point that is shared with the space representing the modifier, 
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this point can be taken as an origo of a transformation of the modifier space. This example 

can be generalized. The radial projection tells you how to import structure from other 

domains – and as long as concepts are convex and compact, such function always exists. 

Radial projection is a continuous function, so again all transformations preserve 

neighborhoods! 

If the head and modifier only share some dimensions, the modifier (for example in “pet fish”) 

or the head (for example in “stone lion”) is projected onto the shared subspace and then 

expanded into a shared space by inverse projection. For example in stone lion, the 

representation of stone includes the property “non-living,” while “living” is presumed by 

many of the domains of lion. These domains, like sound, habitat, behavior, etc, can thus not 

be assigned any region at all. By large, the only domain of lion that is compatible with stone 

is the shape domain. Consequently, the meaning of stone lion is an object made of stone that 

has the shape of a lion. 

In Gärdenfors (2000, p. 122), the following general rule for the meaning of a composition of a 

head D and a modifier C was formulated: ”The combination CD of two concepts C and D is 

determined by letting the regions for the domains of C, confined to the contrast class defined 

by D, replace the corresponding regions for D.” We can now see that this principle follows as 

a consequence of the constructions presented in this section. 

4.3 Metaphorical composition 

Even if the head and the modifier do not share any dimension, we can still create a mapping 

between different domains by exploiting the convexity and compactness of the domains. 

Indeed an important implication of the existence of a radial projection is that any two convex 

compact spaces can be mapped via homeomorphism. This permits the creation of the 
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metaphor effect, that is, the transfer of structure from one domain to another. Once this is 

made, we are back to the previous modifier action.  

As a simple example, let us consider the expression “the peak of a career.” The literal 

meaning of peak refers to a structure in physical space, namely the vertically highest point in 

a horizontally extended (large) object, typically a mountain. This structure thus presumes two 

spatial dimensions, one horizontal and one vertical (see figure 10a). 

 

Figure 10: (a) A metaphorical reinterpretation of (b) the literal meaning of ”peak” (from Gärdenfors 2000, p. 

177). 

A career is an abstract entity without location in space. So how can a career have a peak? 

What happens when we metaphorically talk about the peak of a career is that the same 

geometrical structure is applied to a two-dimensional space that consists of the time 

dimension (of the career), which is mapped on the horizontal spatial dimension, and a 

dimension of social status (or “level of accomplishment”, e.g. in athletics) (see figure 10b). 

The latter dimension is normally conceived of as being vertical: we talk about somebody 

having a “higher” rank, “climbing” in the hierarchy, etc (see Lakoff and Johnson 1980). 

A metaphor does not come alone – it is not only a comparison between two single concepts 

but it also involves an identification of the structure of two complete domains. Once a domain 

has been connected to another via metaphor, this connection may serve as a generator for new 

metaphors based on the same kind of relations (see also Lakoff and Johnson 1980, 

Vertical Social status

Horizontal Time

(a)

The peak of a mountain

(b)

The peak of a career
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Tourangeau and Strenberg 1982 and Gärdenfors 2000, Section 5.4). In brief, metaphorical 

mappings involve whole systems of concepts. 

To sum up, we have presented three different ways of composing a modifier and a head. The 

first one is just plain compositional product construction. The second presupposes an 

adaptation, in the form of a radial projection (via a gauge function) onto the head space, of the 

modifier space. The third one, which is involved in metaphor, requires in addition a 

homeomorphic mapping between spaces. The constructions presume that mental spaces are 

partitioned into domains. However, in all three cases, the topological properties of the spaces 

are preserved, which make them ready for further composition. 

It should be noted the composition discussed in 4.1 is a special case of that in 4.2, which in 

turn is a special case of the compositions in 4.3. The compositions in 4.1 do not need to 

modify existing spaces. The compositions in 4.2 modify spaces that are naturally overlapping. 

Finally, the metaphors in 4.3 require establishing the homeomorphic correspondences 

between different spaces. As a consequence, we expect that the three levels of composition 

will require increasing cognitive processing. 

5. How a meeting of minds is achieved in language games 

Communication is for some reason. Until now we have postponed the issue of how 

motivation and the stakes of communication shape the semantic reaction function. Given what 

has been presented so far, it may seem that the semantics we propose is purely mentalistic. 

However, reality enters via the payoffs of communication. If meaning is not aligned with 

reality, then the communicators will suffer costs. Reality is what makes not all of our wishes 

come true, or as Philip K. Dick expresses it: “reality is that which, when you stop believing in 

it, doesn't go away.” 

Reality often enters communication when we use indexicals. A paradigmatic case is pointing 

in combination with “this” or that.” As we mentioned already in the introduction, pointing is a 
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way of coordinating our visual spaces, via a reference to the external world.  

Schelling’s (1960) type of coordination game has often been used to introduce simple forms 

of semantic equilibria (see also Lewis (1969)). In such games all equilibria have the same 

payoff, which implies that selection must be found by resorting to external factors such as 

conventions or perceptual salience. However, reality may enter communication games by 

making some equilibria superior in terms of payoffs. To make a Schelling style example, 

image that your have agreed on a meeting in a very large square. In this case there is an 

infinity of equilibria corresponding to the different location in the square. But it happens to be 

raining and there is only one spot in the square protected from rain. In this case, the obvious 

equilibrium to be selected is the one that lends the payoff being protected from the rain. So 

the payoff of reality can be used to select equilibria in communication games. In other cases, 

reality may void meetings of mind. Contracts offer a wealth of examples (Varzi and Warglien, 

to appear). A paradigmatic example concerns a contract (Sherwood vs. Walzer, 33 N.W. 919 

– Michigan 1887) where the covenants had agreed for the sale of a non-pregnant cow, but the 

cow turned out to be pregnant. The court has considered the contract void, since “The thing 

sold and bought had in fact no existence.  She was sold as a beef creature would be sold; she 

is in fact a breeding cow, and a valuable one”. 

In Jäger and van Rooij’s (to appear) example, explicit payoffs for the success of 

communication were introduced and the payoffs generated the best response function that 

determined the fixpoint. More generally, considering the pragmatic factors that determine the 

payoff of communication leads naturally into communication games. In such a game, speech 

acts become moves that modify the conversational playground. 

A typical move in a communication game that proposes to restrict the common ground is an 

assertion (Clark 1992, Warglien 2001). In accordance with this, Stalnaker (1979, p. 323), 

writes: “… the essential effect of an assertion is to change the presuppositions of the 
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participants in the conversation by adding the content of what is asserted to what is 

presupposed. This effect is avoided only if the assertion is rejectied.” If your countermove is 

accepting the assertion, then we both contract our mental spaces (expnd our belief states). If, 

on the other hand, you reject the assertion, then another move will have to be attempted (for 

examples, see Clark (1992)). 

A large portion of pragmatics has been concerned with language games – from Wittgenstein 

(1953) to Clark (1992) and further. Most of this literature assumes that any conversation will 

start from a strong set of common presuppositions (for example, sharing a set of possible 

worlds pace Stalnaker (1979) or conversational scores as in Lewis (1979). In contrast, the 

semantics presented here is based on products of mental spaces and not on intersection of 

spaces of possible world. This implies that we do not have to presuppose that the participants 

share mental spaces.  

Another assumption of the traditional approach is that sentences affect the common ground 

through a reduction of the possibilities left open (Heim (1983), Clark (1992), Stalnaker 

(1979)). For example, Stalnaker assumes that the goal of a conversation is to reduce the 

common ground and converge to a smaller set of possible worlds. On our approach, we do not 

need the assumption of a strong shared representation. As long as the mental spaces of the 

participants satisfy our topological properties, the structure of these spaces together with 

contraction guarantees convergence. More precisely, if the product space of the mental spaces 

C is compact and the reaction function f: C→C is continuous and such that:  

If for any n, f(C) ⊇ f2(C) ⊇ ... ⊇ fn(C) (repeated applications of f to its range generate a 

decreasing sequence) and for each x, f(x) ≠ ∅, then there exists a compact subset K of 

the product space such that f(K) = K.17 

                                                 
17 The proof immediately follows from theorem 8 in Berge (1997), p. 113. 
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Intuitively, if the communication game constantly contracts the mental spaces of the 

participants, convergence is unavoidable (given compactness). The typical conversational 

rules, as formulated by Grice (1975), are communicational institutions that help maintaining 

the contractive nature of communication and thus ensure convergence. In brief, compactness 

plus Grice’s maxims result in convergence of communication. The condition that repeated 

applications of f to its range generate a decreasing sequence corresponds to the maxim of 

quantity (always be informative) and the condition that f(x) ≠ ∅ corresponds to the maxim of 

quality (never say the false). 

A second advantage of our model is that it allows us to consider a wide variety of 

communicative interaction types that correspond to different game types. For example, we 

want to distinguish between coordination and negotiation games. In coordination games, such 

as the Jäger and van Rooij color game, the participants have common interests, while in 

negotiation games the participants have an interest to reach a common agreement, but they 

have diverging interests on which agreement to reach. 

In a semantic negotiation game, you have an interest to agree on a meaning, but you want to 

agree on different things. This is like in a contractual negotiation, where we have a surplus to 

divide. We may have a partial overlap in our representations of a certain concept, but in order 

to reach an agreement, for example in a contract, we need to negotiate a sufficiently common 

meaning. However, the process is obviously fallible. Once more there are many examples of 

contractual breaches that originate from different meanings associated with agreed contractual 

terms. In a famous court case, the contractors could not agree on the meaning of “chicken” 

that was the good to be delivered (FrigalimentImp. vs. B.N.S. Int’l Sales, 190 F. Supp 116 – 

S.D.N.Y. 1960). 

If the mental spaces of the communicators are widely diverging, more radical communication 

methods must be applied in order to create a meeting of minds. This is when metaphors can 
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be powerful tools. By applying a metaphor that exploits a domain that is shared by the 

communicators, the speaker can convey information about a domain that has no or only a 

vague correspondence in the spaces of the others. For instance, if you want to express an 

emotional experience that goes beyond the experiences of your interlocutors, a metaphorical 

description is often the only available resource. 

6. Conclusion 

This article presents a novel semantic theory based on the meeting of minds. It puts more 

structure into communication games by exploiting the topological and geometric structures of 

individual mental spaces, which are here modeled in terms of conceptual spaces. This 

approach emphasizes the shapes of representations instead of their contents. An advantage of 

our approach, in contrast to cognitive semantics, is that we do not assume that the 

communicators share mental spaces. This makes it possible for us to explain how people can 

misunderstand each other, but still avoid losing contact.  

Putnam (1975) has criticized cognitive approaches to semantics, concluding that “meanings 

ain’t in the head” and that reality thus must be a component in any reasonable semantic 

theory. To counter Putnam’s argument, it can be said that our socio-cognitive framework 

shows that meanings are in the heads of language users when their minds meet.18 Since our 

minds can meet over total fantasies, reality need not be a component for meaning to arise and 

for communication to succeed. On our approach, realism enters the picture when there are 

stakes to the communication, in the sense that the success depends on the outcome of some 

communication game. 

Another advantage of our approach is that we can establish a connection between the 

discreteness of language resources and the continuity of thought. We have argued that 

language, in a broad sense including pragmatics and context, contains mechanisms to preserve 
                                                 
18 See also Gärdenfors (2000), section 5.7. 
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similarity of meanings. We do this by showing that language, with its different resources, is 

an efficient way of approximating the continuity of semantic mappings. As a first study, we 

have focused on compositionality, but there are many other aspects of how linguistic 

structures can preserve similarity that should be investigated. We have even argued that 

semantics, in the form of a meeting of minds, can exist without language, for example in 

communicating by pointing. This is a great advantage of our approach, because it unites the 

different forms of communication and does not treat language as an exclusive carrier of 

meaning. 

Finally, it should be emphasized that our presentation here is just a framework, not a model. 

But our framework lends itself naturally to modeling. We have only in very general term 

considered linguistic structures, in particular some forms of composition applied mostly to 

noun phrases. A next step would be to connect different linguistic categories to particular 

mathematical operations in our framework – something that might require more specific 

linguistic competence than ours. Some specific linguistic phenomena may also be modeled by 

weaker assumptions than we have used in this paper, for example, generalized convexity and 

purely ordinal topologies. 

Acknowledgements 

We thank Michael D. Cohen, Vince Crawford, Jans Erik Fenstad, Gerhard Jaeger, Paolo 

Pellizzari, Johan van Benthem, Joost Zwarts, and the participants at seminars at SALC 

(Università di Trento), and Mumbai for helpful discussions and comments. 



09-05-05 

 34 

References 

Bates, E. (ed) (1976): Language and Context. The Acquisition of Pragmatics, Academic Press, New York. 

Berge, C. (1997): Topological Spaces, Dover, Mineola (NY). 

Brinck, I. (2004): “The pragmatics of imperative and declarative pointing,” Cognitive Science Quarterly 3, 255-

272. 

Brinck, I., Gärdenfors, P. (2003): “Co-operation and communication in apes and humans,” Mind and Language 

18, 484-501. 

Brouwer, L.E.J (1910): “Über ein eindeutige, stetige Transformation von Flächen in sich”, Mathematische 

Annalen 69, 176-180. 

Clark, H. (1992): Arenas of language use. University of Chicago Press, Chicago. 

Croft, W. and Cruse, D. A. (2004): Cognitive Linguistics, Cambridge University Press, Cambridge. 

Evans, V. (2006): “Lexical concepts, cognitive models and meaning-construction”, Cognitive Linguistics 17, 

491-534. 

Fitting, M. (2002): “Fixpoint semantics for logic programming: A survey”, Theoretical Computer Science 278, 

25-51 

Gärdenfors, P (1997): “Does semantics need reality?”, in Does Representation Need Reality?, Austrian Society 

of Cognitive Science Technical Report 97-01, Vienna, pp. 113-120. 

Gärdenfors, P. (2000): Conceptual Spaces: The Geometry of Thought, MIT Press, Cambridge, MA. 

Gärdenfors, P. (2003): How Homo Became Sapiens: On the Evolution of Thinking, Oxford University Press, 

Oxford. 

Gärdenfors, P. (2007): “Representing actions and functional properties in conceptual spaces”, in Body, Language 

and Mind, Volume 1: Embodiment, ed. by T. Ziemke, J. Zlatev and R. M. Frank, Mouton de Gruyter, Berlin, 

pp. 167-195. 

Gärdenfors, P. and Osvath, M. (to appear): “The evolution of anticipatory cognition as a precursor to symbolic 

communication,” to appear in Evolution of Language: Biolinguistic Approaches, Cambridge University 

Press, Cambridge. 

Gärdenfors, P. and Warglien, M. (to appear): “The development of semantic space for pointing and verbal 

communication”, to appear in Conceptual spaces and the construal of spatial meaning. Empirical evidence 

from human communication, Oxford University Press. 



09-05-05 

 35 

Goldin-Meadow, S. (2007): “Pointing sets the stage for learning language and creating language”, Child 

Development 78, 741-745. 

Grice, P. (1975): “Logic and conversation,” in Syntax and Semantics, Vol. 3, Speech Acts, ed. by Peter Cole and 

Jerry L. Morgan. New York: Academic Press 1975, 41–58. 

Harnad, S. (1990): “The symbol grounding problem”, Physica D. 42, 335-46. 

Heim, I. (1983): “On the projection problem for presuppositions”, Proc. of the West Coast Conference on 

Formal Linguistics, vol II, Stanford, CA, 114-125.  

Hopfield, J.J. (1982): “Neural networks and physical systems with emergent collective computational abilities”, 

Proc. Nat. Acad. of Sci. 79, 2554–2558. 

Holmqvist, K. (1993): Implementing Cognitive Semantics, Lund University Cognitive Studies 17, Lund. 

Jäger, G. and van Rooij, R. (2007): “Language structure: Psychological and social constraints”, Synthese 159, 

99-130. 

Jäger, G. (2007): “The evolution of convex categories”, Linguistics and Philosophy 30, 551-564. 

Johannesson, M. (2002): Geometric Models of Similarity, Lund University Cognitive Studies 87, Lund. 

Kripke, S. (1975): “Outline of a theory of truth”, Journal of Philosophy 72, 690-716 

Lakoff, G. and Johnson, M. (1980): Metaphors We Live By, The University of Chicago Press, Chicago, IL. 

Lakoff, G. (1987): Women, Fire, and Dangerous Things. The University of Chicago Press, Chicago, IL. 

Langacker, R. W. (1986): “An introduction to cognitive grammar,” Cognitive Science 10, 1-40. 

Langacker, R.W. (1987): Foundations of Cognitive Grammar, Vol. 1. Stanford University Press, Stanford, CA. 

Lewis, D. (1969): Convention, Harvard University Press, Cambridge, MA. 

Lewis, D. (1970): “General semantics”, Synthese 22, 18-67. 

Lewis D. (1979): “Scorekeeping in a language game”, Journal of Philosophical Logic 8, 339-59. 

Maunder C.R.F. (1980): Algebraic Topology, Cambridge University Press, Cambridge (UK).  

Mervis, C., and Rosch, E. (1981): “Categorization of natural objects”, Ann. Rev. of Psychol. 32, 89–115 

Nosofsky, R. M. (1988a), “Similarity, frequency, and category representations,” Journal of Experimental 

Psychology: Learning, Memory and Cognition, 14, 54–65. 

Okabe, A., Boots, B., Sugihara, K. (1992): Spatial Tessellations: Concepts and Applications of Voronoi 

Diagrams, John Wiley & Sons, New York  

Parikh, P. (2000): “Communication, meaning and interpretation”, Linguistics and Philosophy 23, 185-212. 



09-05-05 

 36 

Putnam, H. (1975), “The meaning of 'meaning',” in Gunderson, K., ed., Language, Mind and Knowledge, 

University of Minnesota Press, Minneapolis, 131-193. 

Rosch, E.: (1975)  “Cognitive representations of semantic categories”, Journal of Experimental Psychology: 

General 104, 192–233. 

Rosch, E. (1978): “Prototype classification and logical classification: The two systems”, in Scholnik, E. (ed.): 

New Trends in Cognitive Representation: Challenges to Piaget’s Theory, 73–86,Lawrence Erlbaum 

Associates, Hillsdale, NJ. 

Schelling, T. (1960): The Strategy of Conflict, Harvard University Pres, Cambridge, MA. 

Shepard, R. N. (1987), “Toward a universal law of generalization for psychological science,” Science 237, 

1317–1323. 

Skyrms, B. (1998): “Salience and symmetry-breaking in the evolution of convention”, Law and Philosophy 17, 

411-418. 

Stalnaker, R. (1979): “Assertion”. Syntax and Semantics 9, 315-332. 

Tourangeau, R. and Sternberg, R. J. (1982), “Understanding and appreciating metaphors,” Cognition 11, 203-

244. 

Tomasello, M. (1999): The Cultural Origins of Human Cognition, Harvard Unversity Press, Cambridge, MA. 

Varzi, A. and Warglien, M. (to appear): “Indeterminate contracts and semantic indeterminacy.” 

Warglien, M (2001): “Playing conversation games”. Paper presented at the 2001 Wittgenstein Society 

Symposium, Kirchberg. 

Wittgenstein, L. (1953): Philosophical Investigations, Blackwell’s, Oxford. 


