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Abstract� In this work we discuss Hebb�s old ideas about cell assemblies in

the light of recent results concerning temporal structure and correlations in

neural signals� We want to give a conceptual� necessarily only rough picture�

how ideas about �binding by synchronisation�� �syn�re chains�� �local and global

assemblies�� �short and long term memory� and �behaviour� might be integrated

into a coherent model of brain functioning based on neuronal assemblies�
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� ASSEMBLIES AND ASSOCIATIVE MEMORIES

��� Cell Assemblies

Cell assemblies have been introduced by Donald Hebb with the intention of pro�
viding a functional and at the same time structural model for cortical processes
and neuronal representations of external events 	Hebb� 
���� According to Hebb�s
ideas� stimuli� objects� things� but also more abstract entities like concepts� con�
textual relations� ideas� and so on are thought of being represented in the brain by
simultaneous activation of large groups of neurons� which are connected by relatively
numerous and�or strong mutual excitatory synapses Single neurons may belong to
many di�erent cell assemblies� the determinant of an assembly is the connectivity
structure between cells that de�nes� which cells lend support to each others �ring
and hence have a higher probability to become coactivated in a reliable manner in
response to di�erent versions of the same stimulus� if an external stimulus excites a
su�ciently large subset of cells of an assembly� then the whole assembly can �ignite�
or ��re�� because recurrent activity� distributed via the speci�c mutual connections�

�To appear in� Miller� R� �editor� Time and the Brain� Conceptual Advances in Brain Research�
vol� �� Harwood Academic Publishers�






raise also those cells above threshold� which are not 	or only weakly� stimulated ex�
ternally This can be viewed as an elementary associative process� where the �ring of
externally driven cells represents the key information and triggers the �ring of cells
representing information addressed by� but not yet contained in the key In a similar
way� also some kind of short term memory is supported� if countinuously changing
subgroops of cells permanently excite other groups� the activation within the assem�
bly may survive for some time after its ignition� even if the external stimulation has
already vanished

The assembly concept furthermore proposes a mechanism for long term memory�
that is� the formation of new assemblies in cortical tissue under the in�uence of
electrical activation Learning is believed to be expressed in activity�dependend
changes of synaptic e�cacies� and the nowadays widely known �Hebbian learning
rule� states that synapses get strengthened� when both connected cells are activated
simultaneously within a certain time window This is motivated by the observation�
that events that repeatedly occur together should somehow belong together Every
time they appear in conjunction� they drive certain subgroups of cortical cells� the
correlated �ring of these sets of neurons 	which are not yet assemblies�� should be
learned and by that� the respective groups should become associatively connected

��� Associative Memories

The classical associative memory is an abstraction of the assembly concept 	Willshaw
et al 
���� Palm� 
���� which models single neurons as simple threshold elements
Figure 
 shows an example of an associative memory comprising � neurons with �
inputs Circles at the bottom and vertical lines represent threshold�neurons and their
dendrites� horizontal lines are axonal input �bres� and small �lled circles synapses�
which are assumed to be zero initially Neuronal excitation patterns are represented
by binary f�� 
g sequences re�ecting �ring of the cells or not in a given time window
A set of associations� that is� pairs of patterns 	xi� yi�� i � 
� �� � � �� is stored in
the synaptic connectivity matrix Special cases are the so�called auto�association�
xi � yi for all pairs i� or hetero�association� xi �� yi� i � 
� �� � � � 	Palm� 
��
� In
�gure 
a two associations are stored� �rst the vector x� � 	
��
�
� activates the
input lines� and y� � 	

�
��� the neurons All synapses� which simultaneously
receive pre� and postsynaptic activity are set to 
� indicated by the black �lled
synapses Afterwards the second association� x� � y� is stored in the same way
	grey synapses�

Figure 
b displays an elementary retrieval process The address pattern x �
	


���� activates via the �rst three input lines some of the previously strengthened
synapses 	squares� Each threshold�neuron sums over its activated synapses� this
determines the �potentials� of the cells� shown as small numbers above the neurons
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Figure 
� Simple associative memory model comprising � in� and outputs a� Lear�
ning of � associations 	x� � y�� and 	x� � y�� At �rst� the �rst pattern pair is
applied to in� and output� then all synapses 	crossings of vertical and horizontal
lines� which are pre� and postsynaptically activated are set to a value of one 	black
circles� Afterwards the second pattern pair is learned in the same way 	grey syn�
apses� b� Retrieval from an erroneous incomplete key� x � 	


���� This input
activates synapses that are drawn as black rectangles The sum over activated syn�
apses of a neuron determines its potential 	small numbers above threshold neurons�
	
��
����� if this is larger or equal to � � � the neuron generates an output of one�
otherwise of zero The output vector y is equal to the stored vector y� Because the
address pattern x has a larger overlap 	common ones� with x� than with x� this is
a proper association
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A neuron generates an output signal of 
� if its potential is larger than a certain
threshold � Here� � � � and thus� the output vector is y � 	�
��

�� which is
obviously exactly the stored vector y� Since the input pattern x is more similar to
x� than to x�� because the number of common ones is � in the �rst� but only 
 in the
second case� this is a correct association In auto�associative networks the output
vector can be fed back to the input for further recurrent iteration steps

��� Spiking Neurons and Threshold Control

The classical associative memory presumably covers basic aspects of pattern storage
in real brains Nonetheless� compared with biological neurons and synapses� the
inclusion of further physiological details seems desirable� particularly� if we ask for
temporal properties of neural systems Conventional associative memory models
employ simple threshold neurons and an iterative� time quantized update scheme
Therefore they can give only a very rough insight into dynamical processes in cell
assemblies For this reason we add some features to the classical model� which
mimic the spiking behavior of real neurons as well as properties of spatio�temporal
integration on dendrites

First� we choose a continuous time model in all simulations shown latery Single
cells are modeled as �spiking neurons�� dendrites and soma of a cell are lumped into
a single potential value Every time this potential reaches a certain threshold � a
pulse�like �actionpotential� is generated Afterwards a suitable refractory mechanism
prevents the cell from �ring immediately again Action potentials� when they arrive
at a target cell� evoke �postsynaptic potentials� of realistic form and time�constants�
and the responses of di�erent synapses are supposed to add up linearly

Investigations by Schwenker et al 	
���� of reccurent auto�associative memo�
ries reveal the need for a proper continuous and global threshold control in order
to avoid that the network is insensitive to any input 	� in �gure 
b too large� or
that its activity explodes 	� too small� In accordance with common ideas about
cortical functioning 	eg Braitenberg and Sch�uz� 
��
�� we assume that pyramidal
cells and their excitatory connections essentially carry information processing tasks�
like feature extraction� pattern storage� pattern retrieval� etc� and that inhibitory
interneurons mainly have regulative functions� one of which probably some kind of
activity control similar to the threshold regulation required from theoretical means
Therefore� we start from excitatorily connected associative networks of spiking neu�
rons and embed interneurons into these models� which measure local �ring rates and

yWe only give informal model descriptions in this paper� because the arguments and results in
the sequel are to a large degree independent of implementational details� More precise descriptions
and equations can be found in Wennekers et al� ����	� and Bibbig et al� ����	�� For comparable
spiking neuron models see Stein ���
��� Gerstner and v�Hemmen ������
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inhibit the excitatory cells accordingly
Networks of this architecture typically reveal collective oscillations above some

critical level of external excitation supposed excitatory and inhibitory synapses are
strong and�or numerous enough We have shown 	Wennekers et al 
���� that
with reasonable assumptions concerning network parameters� �ring can be sparse
even in states of collective oscillations� that is� single neurons need not �re in every
period 	see also next section� This work also shows that the more realistic model
neurons with a threshold and refractoriness support synchronisation more e�ciently
than models with purely probabilistic spike encoder 	eg rate modulated Poisson
processes� This is because the threshold crossing process determines precise �ring
times� whereas those are necessarily imprecise in modulated Poisson models

� LOCAL ASSEMBLIES

Experiments on anesthetized cats and alert behaving monkeys have shown that local
populations of cells in primary visual areas often respond rhythmically with frequen�
cies in the gamma�range 	�����Hz� 	cf Eckhorn� this volume� experimental review
in Singer and Gray� 
���� Most interestingly� those �oscillations�� when observed
at two distant cortical sites� can reveal a considerable amount of synchronization�
which strongly depends on certain non�local stimulus properties and seems to follow
simple �Gestalt��rules like proximity� colinearity� etc� even though the recording sites
may be located in di�erent cortical areas or hemispheres These �ndings have been
taken as evidence for the so�called temporal correlation hypothesis of sensory integra�
tion in the mammalian cortex 	von der Malsburg� 
��
� Eckhorn et al� 
���� Singer
and Gray� 
����� which states� that neurons that �re in response to the stimulation
by the same external entity should display correlated � in particular synchronized
� �ring This way togetherness between parts of a single object can be signaled
even if those are processed over distributed regions of the brain 	�binding by syn�
chronization�� Many attempts have been made to model this �binding� process 	cf
Eckhorn et al and Borisyuk� this volume� see also Wennekers and Palm 	
���� for
an overview and a discussion of some principal assumptions of similar models� In
the sequel of this section we present our own simulations of oscillatory assemblies
in localized patches of cortex and discuss the tentative role of fast gamma rhythms
for information processing

��� Local Dynamics in a Primary Area

We consider a local patch of cortical tissue in a primary cortical area of roughly the
size of a cortical column This patch will contain cells tuned for di�erent stimulus
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orientations� directions� velocities� etc For simplicity we assume that cells can be
ordered by their orientation preference and that similarly oriented cells have a higher
probability to be connected We neglect other tuning properties of cells� which might
be re�ected by the local cortical circuitry and also do not model the laminar structure
of real cortices This means� at �rst approximation we consider a one�dimensional
topographically ordered model network of N � 
�� excitatory spiking neurons with
connectivities restricted to some neighborhood of a given cell 	roughly N��� with
Gaussian spatial decay of probabilities for synapses� Here� topography is meant to
represent orientation tuning� but note that a spatial interpretation is also possible
Embedded into the network of excitatory cells are inhibitory interneurons� which
receive input from excitatory cells in a neighborhood 	of roughly N��� and inhibit
the excitatory cells accordingly Inhibitory cells have graded responses and represent
local pools of interneurons All synaptic reponse functions have transmission delays
of 
ms� a rise time of tr and fall time of tf � where tr � 
ms� tf � �ms for excitatory
and tr � �ms� tf � �ms for inhibitory synapses Axonal conduction delays are not
included� since we only consider a localized patch of cortex

An external �bar� or �grating��stimulus will excite cells in a local cortical network
di�erently strongly depending on its orientation 	and maybe other properties�� this
is taken into account as an external input current into the excitatory cells� which
is centered at some �orientation� 	say neuron N��� and falls o� in a Gaussian way
Furthermore each neuron also receives a certain amount of white noise background
activity modeling spontaneous spiking of background cells

Figure �a displays the activation dynamics of our network for a �bar� stimulus as
explained above Neuron N����� receives the strongest input 	eg is well tuned to
the bar�� and the input strength decays to smaller and larger neuron numbers 	eg
to less well tuned cells� Shown as �LFP� in the �gure is the ensemble average over
excitatory postsynaptic potentials averaged over all cells� which roughly corresponds
to physiologically derived local �eld potentials 	LFP�� and the spike trains of all
exitatory cells as a raster plot over time 	SUA� single unit activity� The LFP signal
clearly shows oscillatory activity� although in a waxing and waning manner similar
to physiological recordings Diamonds above the LFP indicate spiketimes of an
arbitrary neuron 	here neuron number ��� also indicated by the dashed horizontal
line in the raster plot� Apparently the neuron is not rhythmic� but emits spikes
only in some periods of the collective rhythm A closer investigation of all single
unit spike trains reveals� that this is the generic case in our model No neuron
�res periodically In particular we �nd the same categories of cells as reported by
Eckhorn and Oberm�uller 	
���� for experimental data� �locked� cells� which spikes
display auto�correlation�histograms 	ACHs� with oscillatory side peaks and which
are also correlated with the collective rhythm� �lock�in� cells� which are coupled to
the LFP but are not rhythmic by themself 	as revealed by the �atness of their ACH��
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Figure �� Activation dynamics of a local cell assembly in response to a bar stimu�
lus a� Local �eld potentials 	LFP� computed as a lowpassed version of the total
number of spikes per millisecond� reveal clear oscillations in the gamma�range The
rasterplot of single unit activity of the 
�� excitatory neurons 	SUA� nonetheless
shows that cells are only loosely synchronized b� Firing rates of all single neurons
	dashed curve� average taken over �ve seconds� reveal �tuning� properties� but most
cells �re at rates well below the frequency of the LFP oscillation 	�
Hz� Thick line
in b�� further spatial average over seven nearest neighbours c� On average subop�
timally stimulated cells �re later in each LFP�cycle than optimal ones Here� lag is
measured relative to maxima of LFP�oscillation by spike�triggered averaging
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and �non�participating� cells which are neither rhythmic nor coupled to the global
oscillation� although they are driven by the stimulus and �re signi�cantly�

As a consequence of this irregular �ring� single cells in our model can be tuned�
which means they change their �ring frequencies� when the stimulus orientation
	respectively the center of the Gaussian shaped input� changes This can be seen
in �gure �b� where the �ring rate of all neurons is displayed 	dashed line� rates are
averaged over a total sample length of �ve seconds� together with a further average
over local neighborhoods 	thick line� roughly equivalent to multiple unit activity�
MUA� The horizontal line at �
�s indicates the �oscillation� frequency derived from
the power spectrum peak of LFP Almost all cells have lower rates in accordance with
experimental results by Kreiter and Singer 	
���� Furthermore the shape of the rate
function in �gure �b re�ects the Gaussian input strength� and this in turn the single
cell tuning� deviations from the Gaussian shape are mainly due to random lateral
connections Although tuning is one of the most basic properties of cortical neurons�
it cannot be observed in many network simulations� which aim to explain �binding
by synchronization� Those often operate in parameter�regimes� where single cells
	or other kinds of simulated �units�� have very similar �ring frequencies equal to
the oscillation frequency of the collective rhythm� and almost perfectly synchronize�
when they are su�ciently strongly connected As a consequence �tuning curves� are
�at in the synchronized regime

In contrast to this �tight�binding� situation� in our simulations synchronization
is only rather loose Nonetheless� we should mention another property well in ac�
cordance with experimental results K�onig et al 	
���� investigated how precisely
sub�optimally driven cells lock into the collective rhythm Measuring peak�shifts
in cross�correlograms between two sites with orientation preference �� and �� and
varying the orientation � of a stimulus� they found� that sub�optimal cells reveal a
systematic phase�lag relative to optimally stimulated cells� which depends linearly
on the stimulus orientation � and is� in addition� proportional to the di�erence
�� � �� between the preferred orientations of the recorded cells This implies that
the lag of cells with a particular orientation � relative to the best matching cells
	or alternatively to some reference oscillation like the LFP in our simulation� must
depend quadratically on � This is� what is clearly seen in �gure �c� where phase
lags obtained from �tted peaks of spike triggered averages of the LFP signal are
displayed together with a quadratic �t of the lags estimated from the same � second
data set than before Of course� the strong scatter in �gure �a shows that at least
in our simulations this lag is only an average property of cell �ring and by no means
implies deterministic delays between �ring times of di�erent neurons

What happens in our network is the following� best matching cells on average �re
more often They can ignite waves of activation spreading to less excited neurons�
which have not yet �red Therefore� these cells �re later This may be used as a
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coding principle� the later a cell �res the less is it directly supported by the exter�
nal stimulus� but instead may reveal properties of the cortical connectivity matrix
The inhibitory interneurons recognize the increase in activity and suppress further
�ring for some milliseconds Due to di�erent sources of randomness� these cycles
of excitatory ampli�cation and subsequent inhibition appear to be rather imprecise
in amplitude and period duration Nonetheless they reveal elementary properties�
which cannot be explained by tight�binding theories Two points are particularly
important� �rst� there is a pronounced global gamma�oscillation� but single cells
show a broad spectrum of typically slower �ring rates and couple only loosely into
the global rhythm Second� in response to di�erent stimulus conditions cells show
systematic shifts in their �ring times relative to other cells or local �eld potentials
These shifts� however� are only observable in crosscorrelograms computed over long
times� within single gamma�periods the �ring of cells appears to be unreliable and
the relative timing imprecise

After some re�ection this suggests that it is less �phase coupling� of oscillatory
cortical activity in the gamma range that matters in our simulations� than the
temporal synchronicity and �ne spike timing shifts of sets of similarly tuned cells
within single periods Sets of cells are required for reasons of proper signaling
since the single units �re unreliably The oscillation appears as a byproduct of
repeated local processes characterized by a fast spread of activity in excitatory
subnetworks followed by a subsequent inhibition phase� which is somewhat delayed�
because inhibitory potentials are typically slower than excitatory� and the excitatory
activity itself is needed to evoke the inhibition Properties of the collective rhythm
� amplitudes� frequencies � are rather imprecise Therefore� it seems unlikely that
they code for particular stimulus features Similarly� due to the strong �uctuations
correlations decay quickly in time � typically exponentially on a time scale of several
ten to less than 
�� milliseconds � just as found in experiments This supports the
idea that only short epochs of the signals are relevant for information processing
and long coherent wavetrains 	as� for example� in holography� are not necessary In
this context experiments by K�onig et al 	
���b� are quite interesting� these show�
that for electrode distances above roughly two millimeters 	within or between areas�
crosscorrelograms almost exclusively have oscillatory sidebands� whereas at shorter
distances those can be completely missing It seems that distant sites require 	at
least� two gamma�periods for e�ective mutual interactions

��� Pattern Completion and Gamma Oscillations

The previous section considers local assemblies in primary sensory areas Higher
association areas are usually small Therefore� we may assume that those areas can
be reasonably modelled as fully connected associative memories 	Palm� 
���� The
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above interpretation of gamma�oscillations viewed as fast excitatory ampli�cation
processes succeeded by inhibited phases does also apply in this case Here� the
spread of activation proceeds from externally driven neurons 	the address pattern�
to associated neurons of the stored assembly or memory pattern This may involve
one or more synaptic transmissions steps� which might be identi�ed with iterative
feedback steps in the associative memory model The growing inhibition� however�
suppresses the activation after a short time� interrupts the retrieval process and
restarts it after a short relaxation phase This always keeps the network sensitive
to changes in the input signal

Now� it is most notably that Schwenker et al 	
���� have shown� that iterative
retrieval in sparsely coded associative memories is extremely fast provided �ring
thresholds are adapted to the network activity in each step� then at most � feedback
steps 	and most often only one or two� su�ce for perfect retrieval In the current
context this means the following� Taking a few ms for a single associative feedback
step in the cortex� which is determined by synaptic and axonal delays� perfect pat�
tern completion can be performed in less than about 
�ms� which corresponds well
with the activated phase of observable gamma�periods Furthermore the work of
Schwenker et al 	
���� shows that pattern completion is most e�cient in terms
of storage capacity� when the number of ones in the address pattern is about half
that of the stored patterns This practically means that the active input synapses
to any relevant neuron that is about to be �addressed�� should not be less than half
the synapses that could be activated by the complete pattern This implies further�
that spikes must be synchronous if e�ciency is required Since real neurons have
an integration time of a few ms� all relevant information should be present during
those short time intervals These arguments show that the hypothesis that local
information processing is essentially restricted to population bursts of cell pools in
single gamma periods goes very well together with iterative retrieval in associative
memories Not only provide synchronized spikes a high memory capacity� but fre�
quencies in the gamma range are also almost the fastest possible operation speed
for rhythmic retrieval A more thorough discussion of these and related topics can
be found in Wennekers and Palm 	
����

Figure � shows a simulation of the general principle applied to associative re�
trieval in a higher area Three di�erent patterns� eg local assemblies� have been
stored in a fully connected coupling matrix Beside this the network structure is
very similar to that in �gure �� but time constants of synaptic potentials are so�
mewhat di�erent� therefore� the observed oscillation has a di�erent frequency Note
that during the retrieval phase in �gure �e single perfect patterns are recovered from
the composite and incomplete input pattern 	d� in a very short time Usually only
one pattern is retrieved per elementary associative process Which pattern becomes
ampli�ed depends largely on the noise level� hence random segregation takes place�
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Figure �� Rhythmic associative retrieval in a fully connected memory comprising
�� spiking neurons Three input patterns 	a�c� � coarse�grained to a size of � � �
bins � were used as input to the memory neurons During a preceding learning
phase� each pattern was individually presented to the network for ��� steps and
learned by means of a Hebbian coincidence rule 	data not shown� cf �gure ��
Testpattern 	d� was applied during the displayed simulation run Shown in e� are
raster plots of only those neurons� which �re in response to the stimulus� these cells
are ordered 	as good as possible for three overlapping patterns� by their membership
to the di�erent patterns 	roughly the upper third of units represents the triangle�
middle part� square� lower part plus some cells above� circle� Observe the overall
rhythmicity� but a non�perodic activation of single patterns The mixed patterns
in d� are segregated and completed� but not all three phase�coded within single
periods Instead usually only one pattern is processed completely in every period







but no phase�segregation of di�erent patterns within single periods The �oscilla�
tion� itself has no direct functional signi�cance except keeping the network sensitive�
as soon as a pattern has been retrieved it is suppressed by the somewhat delayed
inhibitory response Afterwards a new retrieval process can take place This way
stationary attractor states are avoided in favour of more �exible recognition pro�
cesses Of course� a more orderly 	apparently non�random� retrieval of the three
patters could be achieved� if we had added a further adaptation in every single cell
with a much lower gain and a larger time constant 	say ��ms� as in the simulations
of binocular rivalry by Fahle and Palm 	
��
� In that case cells belonging to a
pattern that �red most previously are suppressed most strongly and the chance for
the �ring of a pattern increases with the time elapsed since it has �red the last time

� SYNFIRE CHAINS

So far we dealt with temporal synchrony and gamma oscillations� which often� alt�
hough not neccessarily� co�occur in primary visual areas Abeles 	
��
� has described
another type of spatio�temporal correlations in frontal areas� which 	at �rst glance�
are not characterized by synchronized �ring of cells� but consist of precisely timed
sets of spikes of one or several cells with well de�ned relative time�delays� those
spike�patterns 	repeating triplets� quadruplets� etc� � also termed syn�re activity
in the sequel � occur signi�cantly more often than it would be expected by chance�
given the hypothesis that spike trains are independent Poisson processes 	Abeles�

��
� Abeles et al� 
���b� The occurrence of syn�re activity in frontal cortical
areas is furthermore clearly correlated with behavioral events 	Abeles et al� 
���b�
This observation relates the phenomenon to cognitive processes� although the expli�
cit relation is still a matter of discussion

In order to explain those precisely correlated spike events� which can extend over
time�scales of up to hundreds of milliseconds� Abeles 	
��
� introduced the concept
of �syn�re chains� 	SFCs� The main idea is that they arise from ordered sequences
of synchronously �ring pools of neurons� which iteratively excite well de�ned other
pools� whereby a chain of activation evolves and propagates through the network
This idea can be formalized within the framework of associative memories� to this
end it su�ces to envisage every single� synchronously �ring pool of cells as a memory
pattern and store the whole set of linearly ordered 	not necessarily non�overlapping�
patterns pair by pair just as described in �gure 
 The contribution of Aertsen in this
volume considers experimental and biophysical properties of syn�re chains We will
discuss two theoretical aspects� which focus on the tentative role of syn�re activity
for cortical information processing Both view syn�re chains as storage elements�
the �rst describes SFCs as a long term store for learning� recognition and replay of
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spatio�temporal patterns 	cf also Wickelgren� 
����� the second takes them as a
possible physical substrate for short term memory 	STM�

��� Syn�re Chains as Temporal Storage Elements

As mentioned above� syn�re chains can be interpreted as an extension of the stan�
dard associative memory from static or structural patterns to spatio�temporal ones
	cf Palm� 
���� chapter 

� The examples in this section are a consequent elabora�
tion of this idea In fact� the regeneration of ordered sequences of patterns has been
repeatedly demonstrated in SFC�models earlier 	Abeles et al� 
���a� Aertsen et al�

���� Bienenstock� 
���� Nonetheless in this section we go a step farther and show
that SFCs cannot only be used to recover sequences� but also to learn time�patterns
and recognize them in a fault�tolerant manner

We demonstrate the main ideas in form of an example To this end imagine an
excitatorily connected associative network of spiking neurons as considered before
Inhibitory interneurons do no harm as long as the inhibition is not too strong to
forbid the stable propagation of syn�re activity Assume that a sequence of P
patterns is stored in linear order in the coupling matrix For sake of simplicity� we
further replace each pattern by a single representative cell� hence� the syn�re chain
network can be thought of as consisting of P cells coupled feedforward in linear order
Some mathematical analysis reveals� that this structure can show stable propagation
of activity moving from the �rst to the last neuron in the chain� provided some global
threshold level is chosen appropriately 	Wennekers and Palm� 
���� Now� we want
to learn� recognize and replay a certain time�pattern a	t�� where a	t� may have
more than one� for example m� components To do this� we assume that synaptic
connections Cij� i � 
� �� � � � � P� j � 
� � � � �m exist from each component of a to
each neuron in the SFC These synapses are used to store samples of the pattern a	t�
at certain times provided by the ordered �ring of the SFC neurons Learning can
proceed in a Hebbian way� suppose that by some mechanism the learning pattern
a	t� and the activation of the SFC 	node 
� start simultaneously Then� each time ti�
a neuron of the SFC �res� it su�ces to store the actual values a	ti� in the synapses
of the respective neuron i This works in a single trial 	�one�shot� learning�

Figure �c displays an example simulation 	with P � �� and m � �� The spike�
raster of the SFC�neurons is shown to the right These spikes represent the postsyn�
aptic part of the Hebbian learning rule Generation of the 	presynaptic� input time�
signal a	t� requires further explanation� in principle arbitrary� su�ciently smooth
signals can be used as input Here� those are extracted from simple line�drawings as
indicated in �gure �a�b A spot 	rectangle in �gure �a� starts at time zero at some
corner of the object and travels along it with constant speed v The velocity vector
�v	t� � d�r�dt � 	dx�dt� dy�dt�T along the curve �r	t� is taken as the two�dimensional
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Figure �� Syn�re chains can store� recognize and replay spatio�temporal patterns
a��b� Time patterns to learn are derived from simple line�drawings� in a� a spot
moves along the curve r	t� with constant velocity� the two components of the velocity
vector� proportional to dr	t� in b�� provide inputs to each neuron in a syn�re chain
	SFC� c� displays learning of a trajectory� to the left a snapshot of the input space
is shown and to the right the spike�raster of the syn�re chain neurons Learning
in c� is Hebbian� movement 	the spot� and SFC both start at t�� Each time a
SFC�neuron �res it stores the actual input values dr	t� in its synapses The �nally
learned synaptic input matrix C is shown to the right d� displays two�fold replay
of the trajectory by repeated activation of the SFC with two di�erent gain values
Here� the previously learned synapses are used in reverse direction and control the
movement 	velocity vector� in input space e� Recognition of a distorted input
trajectory f� Recognition fails for a di�erent pattern For explanations see text
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input function a	t� Hence� every neuron in the SFC has two external inputs� which
represent velocity in x respectively y�direction When� during learning� neuron i
�res a time ti� its synapses Ci� and Ci� are set to dx	ti��dt respectively dy	ti��dt
The matrix C � 	Cij� resulting from such a learning process is shown to the right in
�gure �� obviously it represents the derivatives of the curve �r	t� in �a 	white codes
for movement in positive and black for movement in negative x or y direction�z

Pattern regeneration is shown in �gure �d Again the SFC has to operate in
the stable regime� but now without external input Instead� the formerly learned
synapses are now interpreted as �output��synapses controlling the movement in the
output space If a neuron in the SFC �res� its synapses determine the instantaneous
velocity vector� with which a movement is performed In �gure �d the SFC is acti�
vated twice � only the second spike�raster is shown By choosing di�erent absolute
starting positions and di�erent 	arbitrary� gain factors the previously stored object
is recovered in two sizes in the input space

Finally� �gures �e and f display examples for pattern recognition To this end the
thresholds in the SFC�network must be high enough to avoid the stable propagation
of excitation without a further external input An additional temporal input into
the actually �ring neurons then can lead to the complete recovery of the stored
sequence� provided the input pattern matches the synaptic pattern of the actually
�ring neurons su�ciently closely At any step only the conjunction of the additional
input and that from the previously �ring SFC�neuron should lead to the �ring of the
next cell If at any position in the SFC� the stored and externally applied patterns
do not mach� the syn�re chain in the recognition network dies out An example
for proper recognition of a distorted version of the stored pattern is shown in �gure
�e Note that 
� the di�erent parameter settings lead to a faster SFC sequence than
before 	cf Wennekers and Palm 	
���� for speed control of SFCs�� �� the distorsions
in the test pattern lead to slight �uctuations in the instantaneous speed of syn�re
propagation and �� the stored pattern e�ectively uses only �� of the total of �� cells
in the SFC 	cf matrix C in �gure �� Hence� under recognition conditions� the last
few nodes do not �re in �gure �e Finally� �gure �f shows failure of recognition for
a completely di�erent input pattern

The above interpretation of syn�re activity explicitly takes account of temporal
information stored in the network structure Nonetheless� we should note� that it
is not very likely that syn�re networks of this kind provide a reasonable substrate
for arbitrary time�patterns an individual might learn� say for example� complex
movement patterns The main reason for this is that sequences longer than some

zWe should mention that the model is not intended as a concrete example for visuo�motor
coordination or related tasks� although similarities might exist� Intended is a purely abstract view�
just as the standard associative memory at �rst is an abstract paradigm� Both models may be
suited as building blocks for more concrete and complex networks� incorporating static as well as
temporal properties of stored entities�
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hundred milliseconds need exceedingly large hardware resources 	Bienenstock� 
����
and� furthermore� the resulting syn�re structure is very in�exible Motor control
	for movements or speech etc� certainly needs more �exible� probably modular and
hierarchically organized structures 	cf also Wickelgren� 
���� However� we believe�
that chains with roughly some 
�� nodes and perhaps 
�� neurons per node may be
useful storage devices for elementary �spatio�temporal features� in such architectures�
the complete information can still be retrieved in a short time and a time�span of
��� to ���ms would indeed make sense� since this is roughly the duration of syllables
or morphemes� which organize speech�production� similar timing intervals have also
been proposed to organize other cognitive tasks 	see Gibbon and Allan 	
���� for a
collection of related articles�

��� Syn�re Chains and Short Term Memory

Primary function of the classical associative memory and its variants is that of a
content�addressable storage device Since information is layed down in synapses�
this function may be identi�ed as long term storage 	LTM� A second function �
possible in recurrent architectures � relates to the short term storage of information�
because memory patterns present attractors of the network dynamics 	at least in
the classical model� see below� it is possible to keep them activated� even if the
initial activating stimulus or address pattern already vanished Di�erent patterns
or assemblies� stored permanently in the coupling matrix� may become selectively
excited by appropriate stimuli Persistent �ring of the related assemblies afterwards
represents the information that the particular stimulus previously occured in the
current behavioral context� either as an external event or internal �idea� This aspect
of short term storage in associative memories has recently been reviewed by Amit
	
����

In light of the interpretation of cortical gamma�oscillations as rhythmic fast
associative processes followed by a period of inhibition outlined earlier� we face some
problems One of the main points of this interpretation is� that the retrieval state
is destroyed almost immediately after it is reached� it lasts just a few milliseconds�
long enough to get signaled to target structures Thereby we avoid the usually
rather stable� hence hardly perturbable� attractor states in standard models and
in turn enable the chance for very fast responses to environmental changes This
model obviously cannot serve directly as an STM device� because it is not clear�
how the activation can be transferred from one synchronous population burst to
the next in the absence of su�cient external stimulation� without the assumption of
exceedingly long excitatory post�synaptic potentials or other facilitating mechanisms
on the time�scale of some ten ms 	cf Bibbig and Wennekers� 
����

STM in associative memories has been demonstrated repeatedly in networks of
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time�discrete noisy or noisefree threshold neurons 	Little� 
���� Palm� 
���� Amit�

���� Also in networks of more realistic spiking neurons persisting attractor states
can be stable 	Abbott and van Vreeswijk� 
���� Gerstner and van Hemmen� 
����
In these models STM is possible because the retrieval states utilize asynchronous
�ring of cells� which can be reached by appropriate choices of network parameters

However� long�time correlations of the syn�re type in persisting activation states
are not possible in such networks It is known that in networks of noisy threshold
neurons spikes of di�erent cells in di�erent time�steps become uncorrelated when the
system size gets large This is because the relative contribution of any single neuron
to the potential of a target neuron becomes vanishingly small in comparison with
the total input 	cf Wennekers and Pasemann� 
���� and references therein� On the
contrary� in networks of spiking neurons with refractoriness 	as far as demonstrated
to date� cells in persistent attractors �re more or less periodically 	depending on
the noise level� This can lead to long�time correlations� but of a di�erent kind in
comparison to syn�re activity In fact� only relatively few cortical cells� especially
in prefrontal areas� �re periodically

It may well be that di�erent areas of the cortex operate in di�erent parameter
regimes� such that association areas subserve STM functions by low rate �ring� weak
synchronisation and syn�re activity� whereas sensory areas show gamma�activity
with the possibility of quickly changing patterns But it is also not unreasonable
to assume that all three phenomena � cortical gamma� syn�re activity and STM �
co�exist in one and the same local network This has not yet been shown explicitly in
a single experimental set�up� but gamma is know to be a rather prominent rhythm
in many cortical structures 	Steriade et al� 
���� Gray� 
���� and syn�re activity
has also been demonstrated in visual cortex and auditory thalamus 	Lestienne and
Strehler� 
���� Villa and Abeles� 
���� To date the least evidence has been found
for physiological signs of STM in reverberant loops of activity 	see perhaps Miyashita
and Chang� 
���� Fuster and Jervey� 
���� Fuster� 
����� but if this concept of short
term storage is biologically relevant at all� it somehow should be expected to exist
at least in wide parts of the association cortexes None of the above cited models �
including our own � can explain gamma oscillations� persistent activity and syn�re
patterns at the same time without modi�cations� hence we may ask whether or not
there exists a uni�ed view

To this end syn�re chain models seem to be a natural starting point It is clear�
that they can serve as a temporal short term store Bienenstock 	
���� argues� that
the control of activity in such networks may even be easier than in more homoge�
neously connected networks Whether or not syn�re chains are also consistent with
gamma�oscillations has been investigated by Abeles et al 	
���a� Their simulation
studies show� that oscillatory behavior can indeed be found in two mutually connec�
ted networks of reverberating syn�re chain models Preliminary own investigations
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of a single reverberating SFC�model with global inhibitory activity control 	similar
to the networks already described above� show oscillations only near stability boun�
daries of stable propagation of syn�re waves Here� the mechanism is essentially an
instability of the inhibitory control loop while suppressing randomly �ring cells that
are uncorrelated with the syn�re activity

A second integrative scenario� perhaps with more physiological signi�cance� as�
sumes� that Hebbian cell assemblies are distributed over wide parts of a single or
several cortical areas In such a framework it is possible that rhythmic associative
processes may occur locally by the same mechanism and with the same interpreta�
tion as discussed above However� to bridge the inhibitory phases and obtain short
term memory it is necessary that local synchronously �ring pools of cells excite
other cell groups in su�ciently large distance The locally synchrounous activity
together with the patchy structure of cortical long�range connections support this
hypothesis� inasmuch as the high convergence of activity in target columns under the
in�uence of synaptic plasticity should lead to rather speci�cally and reliably excited
cell pools in those columns similar to syn�re nodes 	Sommer et al� 
���� Finally
a su�ciently distributed ensemble of such mutually connected patches should lead
to persistent reverberating syn�re�type activity in conjunction with local gamma
oscillations 	which in this case are not necessarily globally synchronized� see our dis�
cussion in Wennekers and Palm� 
���� Furthermore� the results in Sommer et al
	
���� indicate that associative modules connected and operating in a bidirectional
manner provide means for associative storage that can be much more e�cient and
advantageous than single localized auto�associative memories

� GLOBAL ASSEMBLIES

At the end of the last section we arrived at the concept of �global cell assemblies�
Those widely distributed assemblies may include sub�assemblies in di�erent sensory
modalities as well as in higher association areas Therefore� they may serve as
representational schemes for virtually any kind of entity including things� situations�
contexts� concepts� etc However� in some sense the concept of global assemblies
only presents a generalization of localized associative memories to networks of such
networks� where the �super�network� may itself reveal associative properties This
still holds� if we include spatio�temporal features as exempli�ed in �gure �� although
the possible physical modes of temporal behavior will certainly become very complex
in that case Nonetheless� the main purpose is intrinsically that of representation and
association of patterns of excitation� and less that of cognitive reasoning� planning
and complex behavior in time In this section we outline some ideas related to the
latter topics
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��� Cortico�Hippocampal Interplay

In a series of computational studies we investigated global cell assemblies in some
detail 	Palm� 
���� Bibbig et al 
���� 
���� Bibbig and Wennekers� 
���� Wen�
nekers and Palm� 
���� Sommer et al� 
���� In particular we were interested in
the role of the hippocampal formation during memory consolidation and retrieval of
information in networks of higher neocortical associative areas 	see also Klimesch�
this volume� Klimesch� 
���� Miller� 
��
�

Two sensory pathways� say visual and acoustical� were considered in our model�
which both consisted of a primary �pre�processing� area and a higher uni�modal �as�
sociative� area The higher� more central areas� A� and A�� were bi�directionally
connected with a further associative structure� supposedly the hippocampus H
	more generally� this could also be a higher cortical association area� maybe a �con�
vergence zone� in the sense of Damasio� 
���� The model structure of the individual
sub�networks A�� A� and H was virtually the same than that considered in earlier
sections External inputs to the sensory streams were static� simple geometrical line�
�gures for the visual and abstractions of tones or frequency combinations for the
acoustical branch Several inputs could be applied in di�erent combinations The
�pre�processing� areas mainly transformed a speci�c uni�modal input into a local
representation in the respective uni�modal association cortex� A� or A� Spatio�
temporal properties of these peripheral parts of the model are similar to those of
the local assemblies described above 	cf also Wennekers and Palm� 
��� and Bib�
big et al� 
��� for details� Therefore� we focus on the combined behavior of the
neocortical memories and the hippocampus in the following

It is known� that activity in higher association areas is often rather sparse Fur�
thermore� those areas are usually not densely connected with each other Estimates
by Palm 	
���� suggest� that the probability for synchronous pre� and postsynap�
tic activation su�cient for Hebbian strengthening of a synapse is only very small
Without further supportive input� learning of local assemblies in and global assem�
blies including those areas seems unlikely Because the hippocampus receives input
from virtually all higher neocortical areas and can in turn also in�uence them� we
have hypothesized that this brain structure plays a key role in the learning of global
assemblies by providing such support 	Palm� 
���� Even if it sends out unspeci�c
activity to the higher areas� probabilities for coincidences increase steeply� because
the neuronal threshold process is highly nonlinear Since� furthermore� the hippo�
campus is itself an associative structure� which at any moment receives a reduced
but global picture of the ongoing neocortical activation� the hippocampal activity
will by no means be random� but may organise into reduced representations� say spe�
ci�c local assemblies or chunks� which store the information about the conjunctive
occurence of subevents in di�erent areas of associative cortex 	Wickelgren� 
����
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Hebbian strengthening of feedback connections from hippocampal to neocortical lo�
cal assemblies then may lead to stable representations of global cortical states in
cortico�hippocampal loops 	cf Miller� 
��
� This may be the basis for more com�
plex hierarchical representations of ideas and concepts that are less clearly related
to sensory impressions

Figure � displays a computer simulation of this process A�� A� and �Central�
reveal rasterplots of spikes in two neo�cortical areas respectively the hippocampus
The above two black lines indicate that certain input stimuli are supplied to each
of the sensory pathways during the whole simulation run From step � to ��� these
lead to apparently random �ring of a fraction 	here ���� of the cells in both areas
A�� A� The curve �Learning� measures accumulative changes in synaptic e�cacies
due to synaptic plasticity 	Hebbian coincidence rule� in A� 	solid� and A� 	dashed�
Obviously learning is very slow during the �rst ��� steps of the simulation Then�
the hippocampal area receives some further pacemaker signal� which in real brains
may be supplied by the septal region This signal in the theta�frequency range serves
as a rhythmic threshold control for the hippocampus and � together with input from
A�� A� � leads to spikes of some hippocampal cells� which� after being transferred
back to the neocortical areas� almost immediately start to organize the activity
in those areas into synchronized population bursts accompanied by a signi�cant
increase in learning rates After several theta periods synaptic e�cacies saturate at
some maximum level� and the neocortical areas reveal a pronounced gamma�rhythm
similar to that in �gures � and � x

After learning the hippocampal formation binds distributed sets of local assem�
blies into global ones� which now can be retrieved from only partial information
in a single sensory stream� �rst� the respective local assembly is completed in its
unimodal association area� and then � via the cortico�hippocampal�cortical loops �
the hippocampal contextual chunk is reactivated� thereby it addresses and restores
the complete widely distributed information in neocortex 	Miller� 
��
� Wickelgren�

���� Bibbig et al� 
���� We have also demonstrated� that in case of learning of
very many contextual situations� generalization across stimulus properties can take
place in the hippocampus� with a qualitative change of its in�uence from suppor�
ting highly speci�c chunks to a more coarse grained threshold control 	Bibbig et
al� 
���� Finally we should emphasize that the neocortical areas themself were not
mutually connected in the simulations It is clear that also those connections would
become consolidated during learning� with the consequence that at the end cross�
modal retrieval may rely solely on neocortical interactions as in the work of Sommer
et al 	
����

xDue to technical constraints �limited computer time� the time�scales of gamma and theta
rhythms and probably also the learning rates are not realistic�
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Figure �� Hippocampal support of learning of a global cell assembly Two associative
areas�memories A� and A� 	say visual and acoustical� are bidirectionally connected
with the hippocampus 	�Central��� this is further controlled in the theta range by the
septal pacemaker Input patterns presented to A� and A� evoke apparently random
�ring of cells as long as the pacemaker does not drive hippocampal cells 	steps � to
���� Therefore� spike coincidences and learning rates are small 	solid learning curve�
A�� dashed� A�� displayed are accumulative changes in overall synaptic e�cacies�
Activation of the septal pacemaker supports selective �ring of some hippocampal
cells� which represent the current stimulus combination These spikes propagate
back to A� and A� and organize the activity in these areas into synchronized po�
pulation bursts accompanied by a strong increase in learning rates and oscillatory
activity 	similar to �gure �� This way local assemblies are consolidated in A� and
A� and the global contextual information is stored in the cortico�hippocampal loop
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��� Associative Brain Models

Several brain theories based on assembly� or associative memory models as outlined
above have been devised 	Hebb� 
���� Braitenberg� 
���� Wickelgren� 
��
� 
����
Palm� 
���� Damasio� 
���� McGregor� 
���� and more� Interestingly within such
general frameworks the question whether persistent assemblies are supported in the
brain by stochastic or correlated activity has also been discussed early 	eg Hebb�

���� Eccles� 
����

McGregor 	
���� called the two alternatives �stochastic� respectively �sequential
con�guration hypothesis� and outlined a theory of neocortex according to which
entities are represented locally by �sequential con�gurations� or dynamical modes�
very similar to reverberating syn�re chains in local networks Similar modes in dif�
ferent local modules can support each other by long�range connections 	the �super�
network�� see above�� thereby leading to speci�c collective excitation patterns dis�
tributed over almost the whole cerebral cortex Unfortunately the theory is not yet
developed far enough to suggest a functional role for syn�re activity or temporal
structure in brain signals Most e�ects in McGregors paper occur� for example� also
in coupled associative modules with exclusively static attractor states or �modes�

Bienenstock 	
���� is more explicit with regard to the role of �sequential con��
gurations� He proposed a model of the neocortex� focussing on �cognitive compo�
sitionality� This takes syn�re chains as basic� quasi atomic� functional elements or
excitation modes� which are not necessarily restricted to local modules as in McGre�
gors work According to Bienenstock elementary or �narrow� chains themself carry
very little information� but can aggregate or synchronize with each other by inter�
actions via mutual� relatively weak� and plastic synapses Only conjunctive �broad
chains�� which are composed of �exible sets of synchronized narrow chains carry
meaningful information Those broad chains again are thought of as being distri�
buted over large parts of the cortex This way an almost in�nte variety of complex
excitation patterns seems possible� an argument� which has also been put forward
by Palm 	
���� as an advantage of earlier assembly theories in favour of theories
based on grandmother neurons In some sense also Bienenstocks model is essentially
a hierarchical associative memory model� the di�erence to earlier theories is� that
he replaces stationary attractors by SFCs and includes ideas concerning �binding by
synchronization�� now applied to coupled SFCs and not coupled oscillators

��� Towards Cognitive Operations

Experiments performed by Abeles et al 	
���b� on trained awake monkeys show�
that syn�re activity in frontal cortical areas is correlated with behavioral events
Those areas are known to contribute to short term and temporal memory� problem
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solving and planning in complex behavioral tasks 	Fuster� 
���� Therefore� it seems
reasonable to ask how cognitive capabilities might be included in assembly theories
and which particular role syn�re activity may play in this context

Simple stimulus response schemes may be easily explained� it su�ces that an
assembly is learned during training that represents a particular stimulus and triggers
the corresponding response in case it becomes activated in subsequent tasks This
way� also conjunctions or other logical combinations of di�erent simultaneous stimuli
may become associated with a certain response Those mappings would implement
basic �rules� of reactive behavior

Time�order relations between cues may still be represented statically in form
of assemblies �A� and �B� for events� and other assemblies �AB� and �BA� for
their occurence in di�erent temporal order The latter assemblies may then trigger
the desired response Nonetheless� we face the problem how �AB� is excited from
stimuli A and B Possible solutions require short term storage of the �rst stimulus
and subsequently the excitation of assembly �AB� by both� the external input B
as well as the internal representation of A Clearly� both these aspects � in general
terms� short term memory of the temporal stimulus context� and operations on 	or
in�uenced by� those internal representations � exceed the simple stimulus�response
scheme and are central to any theoretical framework of �cognition� Our assembly
theory is well suited for representional purposes� but still lacks elaborated opera�
tional components This should not be a serious problem� in principle� because
arbitrary �nite automata can be built from very simple neural networks 	McCulloch
and Pitts� 
���� von Neumann� 
���� Therefore� a general and rough picture for
cognitive operations based on assemblies is developed in the following�

First� we assume� that external stimuli or events relevant to a certain task are
represented in form of assemblies� which comprise local sub�assemblies in frontal
areas� those may have short�term storage properties and reveal syn�re type activity
as discussed earlier This set of assemblies or �memory chains�� perhaps together with
further ones for the storage of internal events 	like �AB�� �BA�� see above�� can be
viewed as a set of �	logical� variables� representing entities relevant to the particular
experimental situation Storage assemblies can be activated or silent� they represent
propositions about the experimental situation For example� activation of assembly
�AB� means that event A has occured and afterwards also B� its inactivation that
this is not true

Second� we assume the existence of control structures able to perform operations
on memory chains 	eg the activaton of �AB� if �A� is already active and B oc�
curs� Those structures may implement logical and�or procedural knowledge� they
present neuronal �programs� Interestingly� such structures can also be implemented
by syn�re chain networks It turns out that a simple modi�cation leads from re�
verberating syn�re chains to models of spiking neurons able to implement arbitrary
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�nite state automata All that is required are several possible successor states at
any node of the chain� which are activated not only by the �ring of predecessors� but
also in dependence of speci�c input�patterns This way complex graph�like syn�re
structures can be built� which implement the desired control components

Third� memory and control networks are assumed to interact with each other and
also with further input�output structures like sensory�motor or higher associative
areas� �ring of speci�c nodes in the �program��network may trigger elementarymotor
patterns� which are perhaps themself represented by syn�re chain like activity as
discussed in section � They also can induce sampling of new input by threshold
control in appropriate sensory areas More locally� �ring of program�nodes may
excite or inhibit activity in some local memory chains� or gate the transfer of activity
from one storage element to another Contrary� the �ow of activity in the program
network can be in�uenced by the actual state of one or more of the memory chains
as well Also external input may induce conditioned transitions in the program�
network� such that di�erent behavioral procedures can be performed in di�erent
situations in time

The above assumptions su�ce to model arbitrary complex tasks� for example�
we have implemented a network of spiking neurons that is capable to perform arith�
metics based on generalised syn�re chains as described above 	Wennekers� 
����
Similarly also other behavioural or cognitive tasks can be realised

In many behavioural experiments� monkeys need a rather long time to achieve
the skills required for good performance It is plausible to assume that the struc�
tures for storage and processing 	the �cognitive modules�� are acquired during this
training phase and are essentially �xed afterwards This suggests� that these struc�
tures presumably are quite speci�c� that is� built and usable for the particular task
only With respect to local assemblies in frontal areas this would mean that those
are not �universal variables�� but can only represent speci�c external events� ex�
pressed by their connectivity pattern to a corresponding global assembly Now it
seems possible that repeated training of the same task� but with many di�erent�
interchangable stimuli may lead to some kind of generalisation across stimuli� ex�
pressed� for example� as a dissociation of the local assembly from particular features
of the stimuli and remaining connections to general stimulus properties In that
case the �cognitive module� looses the ability to refer back to a speci�c actual global
assembly� it becomes more universal by generalisation across stimulus properties A
similar situation occurs also in delayed match to sample experiments� because the
sample changes from trial to trial and may even be completely new to the animal
Hence� there might not even exist a �xed global representation for it Both cases are
characterised by the existence of local frontal assemblies which do not correspond to
�xed and unique global assemblies Therefore we need some mechanism that tran�
siently binds the local storage assembly� which is part of the well�trained cognitive
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module responsible for the general class of tasks� to the respective representations
of the actual sample stimuli Apparently� the mechanism of memory formation ba�
sed on cortico�hippocampal interplay 	see �
� is able to solve this problem It is
interesting in this context that tasks which require the continuous learning of new
representations appear to be in some sense �more di�cult� than those which solely
rely on �xed sets of stimuli 	cf Klimesch� 
���� Mishkin et al� 
���� The latter
experimental paradigms may involve only associations along neocortical pathways�
which have been strengthened during previous training by repeated presentation of
the �xed stimulus set� this should lead to fast and reliable recognition under test
conditions On the other hand� the former paradigm requires a more complex ar�
chitecture and the acquisition of a new global representation from a single stimulus�
hence the recognition may be less reliable and slower

	� Conclusions

In summary� we have developed a rough picture of cortical function based on cell
assemblies incorporating the time�structure in neural signals as well as operational
components Local information processing has been characterised by fast recurrent
associative ampli�cation processes serving feature binding and �Gestalt��principles
in sensory areas and pattern recognition or segregation in higher association areas
Local assemblies in a modular architecture can be integrated into global ones by
means of numerous uni� and bi�directional synaptic pathways The formation of
such assemblies � that is� the integration of information from di�erent modalities
and other internal sources � as well as their consolidation and crossmodal retrieval
can well be supported by cortico�hippocampal loops Syn�re chains� ie sequential
synchronised activity along speci�c synaptic pathways� have further been shown
to provide a basis for short term memory as well as the storage of spatio�temporal
features of internal or external events Finally� by extending the syn�re chain concept
to �syn�re graphs�� the controlled interaction of assemblies distributed over many
cortical areas can serve as a basis for operational short term memory organizing in
principle arbitrary complex behavioural responses
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