Reciprocals in Space

Jakub Dotlačil and Marieke Schouwstra

UiL OTS

February 24, 2008

Reciprocals in Space

Overview

Reciprocals

The problem

A solution

Non-euclidean Space

Reciprocals in Space

Reciprocals •000	The problem	A solution	Non-euclidean Space
Reciprocals			

A theory of reciprocity

Dalrymple et. al. (1997):

- Systematic investigation of the factors underlying the shifts in the truth conditions of reciprocals
- On the basis of the context, a set of candidate meanings is generated
- The meaning of the reciprocal statement is the strongest of these candidate meanings

Reciprocals	The problem	A solution	Non-euclidean Space
Beciprocals			

An inventory of meanings

NP R each other

Given a reciprocal statement containing a relation *R*, scoping over a domain *A*:

- 1. How does *R* cover *A*?
 - Each pair in A participates in R directly (FUL)
 - Each pair in A participates in R directly or indirectly (LIN)
 - Each single individual in A participates in R with another individual in A (TOT)
- 2. Concerning R
 - direction matters (R)
 - ▶ direction does not matter (R[∨])

.

Universiteit Utrech

Reciprocals	The problem	A solution	Non-euclidean Space
Be size a sta			
Reciprocals			

Overview of reciprocal meanings

Together with SMH this gives the preferred interpretation.

Reciprocals in Space

Reciprocals ○○○●	The problem	A solution	Non-euclidean Space
Beciprocals			

Some examples (that work)

- 1. House of Common legislators refer to each other indirectly
 - SR is the strongest interpretation; it does not contradict our world knowledge about the relation
- 2. Five Boston pitchers sat alongside each other
 - the relation 'sit alongside' is symmetric
 - therefore, three possible interpretations remain: SR, IR, and IAO
 - people have only two sides, so SR cannot hold
 - IR is the strongest interpretation remaining

Reciprocals	The problem	A solution	Non-euclidean Space
Beciprocals			

Some examples (that work)

- 1. House of Common legislators refer to each other indirectly
 - SR is the strongest interpretation; it does not contradict our world knowledge about the relation
- 2. Five Boston pitchers sat alongside each other
 - the relation 'sit alongside' is symmetric
 - therefore, three possible interpretations remain: SR, IR, and IAO
 - people have only two sides, so SR cannot hold
 - IR is the strongest interpretation remaining

Universiteit Utrech

Reciprocals	The problem ●○○○○	A solution	Non-euclidean Space
The problem			

The problem

- 1. Those three boxes are stacked on top of each other.
- 2. # Those three boys are taller than each other.

< 🗇 🕨

• 3 >

Reciprocals	The problem ○●○○○	A solution	Non-euclidean Space
The problem			

The problem in Dalrymple et. al.

- Prediction: a reciprocal statement means IAO if all stronger candidates are unsatisfiable
- ► IAO: TOT \setminus I(A, R $^{\vee}$)
- Each single individual in A participates in R with another individual in A (TOT) (direction does not matter)
- This is a correct prediction for (1)
- But it is incorrect for (2)

Reciprocals	The problem ○○●○○	A solution	Non-euclidean Space
The problem			

Some more examples

- # The two sets outnumber each other
- # My mother and I procreated each other
- # These three people inherited the shop from each other.
- The members of this family have inherited the shop from each other for generations.
- # John and Bill gave each other measles.
- ► The third-graders gave each other measles.

- The three boxes are stacked on top of each other.
- The two students followed each other into the elevator.
- The two birds are flying above each other.

Generalization:

Only statements containing spatial, temporal and spatiotemporal relations allow for an IAO reading. (Beck (2001))

Reciprocals	The problem ○○○○●	A solution	Non-euclidean Space
The problem			

- 1. Those three boxes are stacked on top of each other.
- 2. # Those three boys are taller than each other.
- sketch a method to discern cases like (1) from cases like (2)

Reciprocals	The problem	A solution •ooooooooooooooooooooooooooooooooooo	Non-euclidean Space
A solution			

Looking at the interpretations again

Of these interpretations...

- IAO and IAR allow for sentences that are in fact infelicitous
- so, IAO and IAR are too weak
- SAR just arises from the parameterization, and is not to be found in natural language
- so, there is no reason to maintain it

UiL OTS, Universiteit Utrecht

Universiteit Utrech

Reciprocals	The problem	A solution	Non-euclidean Space
A solution			

A new schema of interpretations

```
► We drop IAO, IAR and SAR

FUL\setminus I(A, R)

↓

LIN\setminus I(A, R)

↓

TOT\setminus I(A, R)
```

▶ i.e. We drop all R[∨]-interpretations

Reciprocals	The problem	A solution	Non-euclidean Space
A solution			

Spatial reciprocals

- The new setup correctly rules out sentences like 'the boys are taller than each other'
- However, it wrongly predicts sentences like 'the three birds are above each other' to be infelicitous

Reciprocals	
0000	

Vector Space Semantics (Zwarts and Winter (2000))

object locations - points in the space = vector end-points

A solution

spatial PP - set of located vectors

The problem

- $\blacktriangleright V_W = \{<\!W,\!V\!>:\!V\!\in\!V\}$
- end-point of w is the center of the vector space V_w

Reciprocals	The problem	A solution ○○○●○○○○○○○○○○	Non-euclidean Space
A solution			

Vector Space Semantics (Zwarts and Winter (2000))

- object locations points in the space = vector end-points
- spatial PP set of located vectors
- V_w = {<w,v>:v∈V}
- end-point of w is the center of the vector space V_w

Reciprocals in Space

Reciprocals	The problem	A solution	Non-euclidean Space
A solution			

near in Vector Space Semantics

- John is near the box.
- [[loc(the box)]] the location of 'the box' in space
- $[near] = \lambda A.\lambda v. external(v,A) \land |v| < r$
- [[near the box]] = λv . external(v, loc(the box)) $\wedge |v| < r$
- [[John is near the box]] = ∀p∈john ∃v [e-point(v)=p ∧ external(v, loc(the box)) ∧|v|<r]</p>

Universiteit Utrecht

Reciprocals	The problem	A solution	Non-euclidean Space
A solution			

above in Vector Space Semantics

Reciprocals in Space

- John is above the box
- $[above] = \lambda A.\lambda v.ext(v,A) \land |v_{up}| > |v_{\perp up}|$

■ [John is above the box]] = ∀p∈john ∃v [e-point(v)=p ∧ external(v,the box) ∧ |v_{up}| > |v_{⊥up}|]

Reciprocals in Space

- John is above the box
- $[above] = \lambda A.\lambda v.ext(v,A) \land |v_{up}| > |v_{\perp up}|$

■ [John is above the box]] = ∀p∈john ∃v [e-point(v)=p ∧ external(v,the box) ∧ |v_{up}| > |v_{⊥up}|]

Reciprocals	The problem	A solution	Non-euclidean Space
A solution			

The three birds are above each other.

- ► TOT $(A,R) \Leftrightarrow dom(R \cap (A \times A)) = A$
- b dom({<x,y>: ∀p∈x∃v [e-point(v)=p ∧ external(v,y) ∧ v_{up} > v_{⊥up}]}∩(the three birds×the three birds))=the three birds
- predicted to be false wrong

伺下 イヨト イヨ

Universiteit Utrecht

Reciprocals	The problem	A solution	Non-euclidean Space
A solution			

The three birds are above each other.

- ► TOT $(A,R) \Leftrightarrow dom(R \cap (A \times A)) = A$
- b dom({<x,y>: ∀p∈x∃v [e-point(v)=p ∧ external(v,y) ∧ v_{up} > v_{⊥up}]}∩(the three birds×the three birds))=the three birds
- predicted to be false wrong

김 글 아 김 글

Jniversiteit Utrech

Reciprocals	The problem	A solution	Non-euclidean Space
A solution			

 ... but it will be true if we evaluate sentences with reciprocals in a spherical space

Reciprocals in Space

- we assume that nouns and verbs have a situation variable
- ► TOT(A,R,s) \Leftrightarrow dom(R∩(A×A×s)) = A in s

Reciprocals in Space

- situations(s) can be projected on a spherical space
- up(s) corresponds to θ (the zenith)
- \perp up(*s*) corresponds to φ (the azimuth)
- the lowest leftmost point in the situation has coordinates (θ, φ)=0, 0
- ► the highest rightmost point in the situation has coordinates (θ, φ)=2π,2π

Reciprocals	The problem	A solution	Non-euclidean Space
A solution			

above in a spherical space

- $[above] = \lambda A.\lambda v.external(v,A) \land v_{up} > v_{\perp up}$
- situation in a spherical space
- ▶ up=*θ*
- Lup=φ
- ▶ $v_{up}=\theta$ between the s-point of v_{up} and end-point of v_{up}
- v⊥up=φ between the s-point of v⊥up and end-point of v⊥up

Reciprocals	The problem	A solution ○○○○○○○○○○●○○	Non-euclidean Space
A solution			

above in a spherical space

The three birds are above each other.

∃s dom({<x,y,s>: ∀p∈x∃v [e-point(v)=p ∧ external(v,y) ∧
 v_{up} > v_{⊥up}] in s}∩(the three birds×the three birds×s)) = the
 three birds in s

< 3 >

iversiteit Utrech

Reciprocals in Space

A solution

- # John and Bill gave each other measles.
- ► $\exists s \text{ dom}(\{<x,y,s>: x \text{ infected } y \text{ with measles in } s]\}\cap(j+b\times j+b\times s)) = j+b \text{ in } s$
- 'giving measles' does not change in a spherical space!
- sentence correctly predicted as false

- # John and Bill gave each other measles.
- → ∃s dom({<x,y,s>: x infected y with measles in
 s]}∩(j+b×j+b×s)) = j+b in s
- 'giving measles' does not change in a spherical space!
- sentence correctly predicted as false

- # John and Bill gave each other measles.
- → ∃s dom({<x,y,s>: x infected y with measles in
 s]}∩(j+b×j+b×s)) = j+b in s
- 'giving measles' does not change in a spherical space!
- sentence correctly predicted as false

イロト イポト イヨト イヨ

Universiteit Utrecht

- # John and Bill are taller than each other.
- → ∃s dom({<x,y,s>: x's height is bigger than y's height in
 s]}∩(j+b×j+b×s)) = j+b in s
- I stay smaller than Marieke even if the situation in which we are is mapped on a spherical space!
- sentence correctly predicted as false

- # John and Bill are taller than each other.
- Bs dom({<x,y,s>: x's height is bigger than y's height in s]}∩(j+b×j+b×s)) = j+b in s
- I stay smaller than Marieke even if the situation in which we are is mapped on a spherical space!
- sentence correctly predicted as false

- ▶ # John and Bill are taller than each other.
- Bs dom({<x,y,s>: x's height is bigger than y's height in s]}∩(j+b×j+b×s)) = j+b in s
- I stay smaller than Marieke even if the situation in which we are is mapped on a spherical space!
- sentence correctly predicted as false

Reciprocals	The problem	A solution	Non-euclidean Space
Non-euclidean Space			

Bend it until it breaks?

- In the model just proposed, reciprocal statements are evaluated in a geometry that is not in accordance with our intuitions
- research in physics and psychology shows that describing the perception of space in purely Euclidean terms is not that straightforward either

Reciprocals	The problem	A solution	Non-euclidean Space ○●○
Non-euclidean Space			

The structure of space - as we perceive it

Research in human perception: hypotheses about the geometry of visual and haptic space

Reciprocals in Space

Reciprocals	The problem	A solution	Non-euclidean Space ○○●
Non-euclidean Space			

Visual and haptic space

The fact that there are stimuli that are perceived differently from their physical existence gives rise to considering visual space as non-Euclidean space. (Buffart and Leeuwenberg, 1978)

Haptic space like visual space is not Euclidean (Kappers and Koenderink, 1996)

