# Reciprocals in Space 

# Jakub Dotlačil and Marieke Schouwstra 

UiL OTS

February 24, 2008

## Overview

Reciprocals

The problem

A solution

Non-euclidean Space


## A theory of reciprocity

Dalrymple et. al. (1997):

- Systematic investigation of the factors underlying the shifts in the truth conditions of reciprocals
- On the basis of the context, a set of candidate meanings is generated
- The meaning of the reciprocal statement is the strongest of these candidate meanings


## An inventory of meanings

- NP R each other

Given a reciprocal statement containing a relation $R$, scoping over a domain $A$ :

1. How does $R$ cover $A$ ?

- Each pair in $A$ participates in $R$ directly (FUL)
- Each pair in $A$ participates in $R$ directly or indirectly (LIN)
- Each single individual in $A$ participates in $R$ with another individual in $A$ (TOT)

2. Concerning $R$

- direction matters (R)
- direction does not matter ( $R^{\vee}$ )


## Overview of reciprocal meanings



- Together with SMH this gives the preferred interpretation.


## Some examples (that work)

1. House of Common legislators refer to each other indirectly

- SR is the strongest interpretation; it does not contradict our world knowledge about the relation

```
2. Five Boston pitchers sat alongside each other
    * the relation 'sit alongside' is symmetric
    * therefore, three possible interpretations remain: SR,IR,
    and IAO
    * people have only two sides, so SR cannot hold
    - IR is the strongest interpretation remaining
```


## Some examples (that work)

1. House of Common legislators refer to each other indirectly

- SR is the strongest interpretation; it does not contradict our world knowledge about the relation

2. Five Boston pitchers sat alongside each other

- the relation 'sit alongside' is symmetric
- therefore, three possible interpretations remain: SR, IR, and IAO
- people have only two sides, so SR cannot hold
- IR is the strongest interpretation remaining


## The problem

1. Those three boxes are stacked on top of each other.
2. \# Those three boys are taller than each other.


## The problem in Dalrymple et. al.

- Prediction: a reciprocal statement means IAO if all stronger candidates are unsatisfiable
- IAO: TOT $\backslash I\left(A, R^{\vee}\right)$
- Each single individual in A participates in $R$ with another individual in $A$ (TOT) (direction does not matter)
- This is a correct prediction for (1)
- But it is incorrect for (2)


## Some more examples

- \# The two sets outnumber each other
- \# My mother and I procreated each other
- \# These three people inherited the shop from each other.
- The members of this family have inherited the shop from each other for generations.
- \# John and Bill gave each other measles.
- The third-graders gave each other measles.
- The three boxes are stacked on top of each other.
- The two students followed each other into the elevator.
- The two birds are flying above each other.

Generalization:
Only statements containing spatial, temporal and spatiotemporal relations allow for an IAO reading. (Beck (2001))

## Plan

1. Those three boxes are stacked on top of each other.
2. \# Those three boys are taller than each other.

- sketch a method to discern cases like (1) from cases like (2)


## Looking at the interpretations again



Of these interpretations. . .

- IAO and IAR allow for sentences that are in fact infelicitous
- so, IAO and IAR are too weak
- SAR just arises from the parameterization, and is not to be found in natural language
- so, there is no reason to maintain it


## A new schema of interpretations

- We drop IAO, IAR and SAR

```
FUL \(\backslash(A, R)\)
\(\downarrow\)
\(\operatorname{LIN} \backslash I(A, R)\)
\(\downarrow\)
\(\operatorname{TOT} \backslash I(A, R)\)
```

- i.e. We drop all $R^{\vee}$-interpretations


## Spatial reciprocals

- The new setup correctly rules out sentences like 'the boys are taller than each other'
- However, it wrongly predicts sentences like 'the three birds are above each other' to be infelicitous


## Vector Space Semantics (Zwarts and Winter (2000))

- object locations - points in the space = vector end-points
- spatial PP - set of located vectors
- $\mathrm{V}_{w}=\{\langle\mathrm{W}, \mathrm{V}\rangle: \mathrm{V} \in \mathrm{V}\}$
- end-point of w is the center of the vector space $V_{w}$


## Vector Space Semantics (Zwarts and Winter (2000))

- object locations - points in the space = vector end-points
- spatial PP - set of located vectors
- $\mathrm{V}_{w}=\{\langle\mathrm{W}, \mathrm{V}>: \mathrm{v} \in \mathrm{V}\}$
- end-point of w is the center of the vector space $\mathrm{V}_{w}$



## near in Vector Space Semantics

－John is near the box．

- 【loc（the box）】－the location of＇the box＇in space
- 【near】 $=\lambda A . \lambda v$. external $(v, A) \wedge|v|<r$
- 【near the box】＝$\lambda \mathrm{v}$ ．external（ v ，loc（the box））$\wedge|\mathrm{v}|<r$
- 【John is near the box】＝ $\forall \mathrm{p} \in$ john $\exists \mathrm{v}$［e－point（ v$)=\mathrm{p} \wedge$ external（ v ，loc（the box））$\wedge|\mathrm{v}|<\mathrm{r}]$


## above in Vector Space Semantics

- up(v), $\perp$ up(v)
$-\mathrm{V}=\mathrm{V}_{u p}+\mathrm{V}_{\perp u p}$

- John is above the box
- $\llbracket \mathrm{above} \rrbracket=\lambda \mathrm{A} \cdot \lambda \mathrm{v} \cdot \operatorname{ext}(\mathrm{v}, \mathrm{A}) \wedge\left|\mathrm{v}_{u p}\right|>\left|\mathrm{v}_{\perp u p}\right|$

> - 【John is above the box】 $=\forall p \in$ john $\exists v$ [e-point( $v$ ) $=p \wedge$ external(v,the box) $\left.\wedge\left|\mathrm{v}_{\text {up }}\right|>\left|\mathrm{v}_{\perp \text { up }}\right|\right]$
- John is above the box
- $\llbracket \mathrm{above} \rrbracket=\lambda \mathrm{A} \cdot \lambda \mathrm{v} \cdot \operatorname{ext}(\mathrm{v}, \mathrm{A}) \wedge\left|\mathrm{v}_{u p}\right|>\left|\mathrm{v}_{\perp u p}\right|$

- $\llbracket J o h n$ is above the box】 $=\forall p \in$ john $\exists v[e-p o i n t(v)=p \wedge$ external(v,the box) $\left.\wedge\left|v_{u p}\right|>\left|v_{\perp u p}\right|\right]$
- The three birds are above each other.

FUL $\backslash(A, R)$

$\downarrow$
$\operatorname{LIN} \backslash I(A, R)$

$\downarrow$
$\operatorname{TOT} \backslash I(A, R)$


- $\operatorname{TOT} \backslash \mathrm{I}(\mathrm{A}, \mathrm{R}) \Leftrightarrow \operatorname{dom}(\mathrm{R} \cap(\mathrm{A} \times \mathrm{A}))=\mathrm{A}$
- $\operatorname{dom}\left(\left\{<x, y>: \forall p \in x \exists v\left[e-p o i n t(v)=p \wedge\right.\right.\right.$ external $(v, y) \wedge v_{u p}>$ $\left.\left.\mathrm{v}_{\perp \text { up }}\right]\right\} \cap($ the three birds $\times$ the three birds) $)=$ the three birds
- predicted to be false - wrong
- The three birds are above each other.
FUL $\backslash I(A, R)$
$\downarrow$
LIN $\backslash I(A, R)$
$\downarrow$
TOT $\backslash I(A, R)$

- $\operatorname{TOT} \backslash \mathrm{I}(\mathrm{A}, \mathrm{R}) \Leftrightarrow \operatorname{dom}(\mathrm{R} \cap(\mathrm{A} \times \mathrm{A}))=\mathrm{A}$
- $\operatorname{dom}\left(\left\{<x, y>: \forall p \in x \exists v\right.\right.$ [e-point(v)=p $\wedge$ external $(v, y) \wedge v_{u p}>$ $\left.\left.\mathrm{v}_{\perp u p}\right]\right\} \cap($ the three birds $\times$ the three birds) $)=$ the three birds
- predicted to be false - wrong
- ... but it will be true if we evaluate sentences with reciprocals in a spherical space
- we assume that nouns and verbs have a situation variable
- $\operatorname{TOT}(A, R, s) \Leftrightarrow \operatorname{dom}(R \cap(A \times A \times s))=A$ in $s$
- situations(s) can be projected on a spherical space
- up(s) corresponds to $\theta$ (the zenith)
- $\perp u p(s)$ corresponds to $\varphi$ (the azimuth)
- the lowest leftmost point in the situation has coordinates $(\theta$, $\varphi)=0,0$
- the highest rightmost point in the situation has coordinates $(\theta, \varphi)=2 \pi, 2 \pi$


## above in a spherical space

- $\llbracket$ above】 $=\lambda \mathrm{A} . \lambda \mathrm{v} . \operatorname{external}(\mathrm{v}, \mathrm{A}) \wedge \mathrm{v}_{u p}>\mathrm{v}_{\perp u p}$
- situation in a spherical space
- up= $\theta$
- $\perp$ up $=\varphi$
- $\mathrm{v}_{u p}=\theta$ between the s-point of $\mathrm{v}_{u p}$ and end-point of $\mathrm{v}_{u p}$
- $\mathrm{v}_{\perp u p}=\varphi$ between the s -point of $\mathrm{v}_{\perp u p}$ and end-point of $\mathrm{v}_{\perp u p}$


## above in a spherical space

- The three birds are above each other.

- $\exists \mathrm{s} \operatorname{dom}(\{<x, y, s>: \forall p \in x \exists v[e-p o i n t(v)=p \wedge$ external $(v, y) \wedge$ $\left.\mathrm{v}_{u p}>\mathrm{v}_{\perp u p}\right]$ in s$\} \cap($ the three birds $\times$ the three birds $\left.\times s)\right)=$ the three birds in s
- \# John and Bill gave each other measles.
- $\exists \mathrm{s}$ dom $(\{\langle x, y, s\rangle$ : $x$ infected $y$ with measles in $s]\} \cap(j+b \times j+b \times s))=j+b$ in $s$
- 'giving measles' does not change in a spherical space!
- sentence correctly predicted as false
- \# John and Bill gave each other measles.
- $\exists \mathrm{s}$ dom $(\{\langle x, y, s\rangle$ : $x$ infected $y$ with measles in $s]\} \cap(j+b \times j+b \times s))=j+b$ in $s$
- 'giving measles' does not change in a spherical space!
- sentence correctly predicted as false
- \# John and Bill gave each other measles.
- $\exists \mathrm{s} \operatorname{dom}(\{\langle x, y, s\rangle$ : $x$ infected $y$ with measles in $s]\} \cap(j+b \times j+b \times s))=j+b$ in $s$
- 'giving measles' does not change in a spherical space!
- sentence correctly predicted as false
- \# John and Bill are taller than each other.
- $\exists \mathrm{s}$ dom( $\langle<x, y, s>: x$ ’s height is bigger than y's height in $s]\} \cap(j+b \times j+b \times s))=j+b$ in $s$
- I stay smaller than Marieke even if the situation in which we are is mapped on a spherical space!
- sentence correctly predicted as false
- \# John and Bill are taller than each other.
- $\exists \mathrm{s}$ dom( $\{<x, y, s>: x$ ’s height is bigger than y's height in $s]\} \cap(j+b \times j+b \times s))=j+b$ in $s$
- I stay smaller than Marieke even if the situation in which we are is mapped on a spherical space!
- sentence correctly predicted as false
- \# John and Bill are taller than each other.
- $\exists \mathrm{s}$ dom( $\{<x, y, s>: x$ ’s height is bigger than y's height in $s]\} \cap(j+b \times j+b \times s))=j+b$ in $s$
- I stay smaller than Marieke even if the situation in which we are is mapped on a spherical space!
- sentence correctly predicted as false


## Bend it until it breaks?

- In the model just proposed, reciprocal statements are evaluated in a geometry that is not in accordance with our intuitions
- research in physics and psychology shows that describing the perception of space in purely Euclidean terms is not that straightforward either


## The structure of space - as we perceive it

Research in human perception: hypotheses about the geometry of visual and haptic space


## Visual and haptic space

The fact that there are stimuli that are perceived differently from their physical existence gives rise to considering visual space as non-Euclidean space.
(Buffart and Leeuwenberg, 1978)
Haptic space like visual space is not Euclidean
(Kappers and Koenderink, 1996)

