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Introduction

% Puzzle: Gap between symbolic and subsymbolic (neuron-like
modes of processing

< Aim: Overcoming the gap by viewing symbolism as a high-level
description of the properties of neural networks

% Method: standard methods of model-theoretic and algebrai
semantics. Neural (Re)interpretation of information states a
activation states of a neuronal network.

< Main thesis: Certain activities of connectionist networks can be
interpreted asnonmonotonic inference particular, there is a
strict correspondence between Hopfield networks and wergidta
ated Poole systems. Extension of Balkenius & Gaerdenfors (1991
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Intended results

I==" Better understanding of connectionist networks:

O O A WDN PP

Nonmonotonic logic and algebraic semantics as descriptive ar
analytic tools for analyzing their emerging properties

New methods for performing nonmonotonic inferences:

Connectionist methods (randomised optimisation: simulatec
annealing) can be adopted for realizing symbolic inferences

Certain logical systems are singled out by giving them a "deepe
justification".

Overview

Introduction

A concise introduction to neural networks

Information states as neural activation patterns

Asymptotic spreading of activation and nonmonotonic inference
Weight-annotated Poole systems

The correspondence between symbolic inferences in weigh
annotated Poole systems and inferencesmmectionist networks
(Hopfield nets)



2 A concise introduction to neural networks

General description

A neural network N can be defined as a quadruple

<S,F,W,G>:

S Space of all possible states

W  Set d possible cofigurationswl W describe$or each
pair i,j o "neurons the connection ypoetveen i and |

F Set d actvationfunctions. For given cotiguration
wlIW afunction {,[JF describes he the neuron activities
spread throgh that netvork (fast g/namics)

G Set d learnirg functions (slav dynamics)

Hopfield networks

Let the interval [-1,+1]
be the working range of
each neuron

+1:. maximal firing rate
0: resting

S=[1,1]"
Wi = Wi, Wi =0

Aynchronous Updating:

si(t+1) =0 (2 wyxs(b),
if 1 = random(1,n)

sij(t+1l) = s(t), otherwise

Step 1 Step 2
Step 3 Step 4
Step 98651 Step 98652

!
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3 Information states in Hopfield networks

Activation states can be partially ordered in accordance with their
informational content

+1: maximal firing rate } indicating maximal
specification
0: resting indicating underspecification
Poset of activation states Extended poset of activation states
S ={1,0,+1)" S ={-1,0,+1,nil}"
nil = "impossible activation"
s>t iff s>t>0 or <t <0, s>tiff s;=nil or s>t >0 or $<t <0,
for all 1<i<n. for all 1<i<n.
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This poset doesn't form a lattice /

DeMorgan lattice



5

CONJUNCTION ©: simultaneous realization of two states
DISJUNCTION @: some kind of generalization.

This fact enables us to interpret activation states as propositional obje
(information states

4  Asymptotic updates and nonmonotonic inference

The fast dynamicslescribes how neuron activities spread through tha
network. Hopfield networks (and other so-callegonance systems
exhibit a desirable property: when given an input state s the syste
stabilizes in a certain state.

Fact 1 (Hopfield 1982)
The function E(s) =X%;,; w;-$-$ Is a Ljapunov-function of the system in
the case of an asynchronous update function f. l.e., when the activati
state of the network changes, E either

decreases or remains the same. E]ﬁstart

output states lim. {f (s)) can be
characterized aghe local minimaof
the Ljapunov-function.

asynchronous

Fact 2 (Hopfield 1982) Hpdstes
The output states lim,, "If (s)) can
be characterized dise global minima
of the Ljapunov-function if certain stochastic update functions f are
considered ("simulated annealing").

asynchronous updates with faults
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Definition 1  (asymptotic updates)
ASUP, (s) 5ot {t:t=1lim.. P (s)} [fasynchr. updates with clamping]

Definition 2 (E-minimal specifications of s)
ming(S) 54 {t: s and there is nd:ts such that E(I<E(t)}

Consequence of fact 2
ASUPR,, () Zet Mirk (s), where  E(S)=2 5 WSS
(energy function)



Example

we [ 020 5 /\

/X

0.1 -1 O—0 @—0C
Input Output
E
<100> < <100> 0
<101> -0.1
<110> -0.2
<111> 0.7
<11-1> -1.1 =8

ASUPR,(<100>)= mip (s) = <11-1>

Definition 3 (Nonmonotonic inference relation)
s r,tIff s>t foreach s£ ASUP, (s)

In our example <100>r,, <11-1>
<100>+r, <010>

Fact 3
() ifs>t then sr,t (SUPRACLASSICALITY)
(i) srysS (REFLEXIVITY)

(i) ifs r, tand ®t r, u, thensr,u (QUT)
(iv) ifs r,tand sr, u, then ot ~ ,u (CAUTIOUS MONOTONIC.)
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5 Weight-annotated Poole systems

Knowledge base in
(a) connectionist systems:
e connection matrix
 energy function
(b) symbol systems
* strong and weak (default-) rules

At least for Hopfield systems there is a strict relationship betwee
connectionist and symbolic knowledge bases.

© Symbolic systems can be used to understand connectionist syster
© Connectionist systems can be used to perform inferences.

Let us consider the languagg; L of propositional logic (refering to th
alphabet At of atomic symbols)

Definition

A triple <At, A, g> is called a weight-annotated Poole system iff

() Atis a nonempty set (of atomic symbols)

(i) A Is a set of consistent sentences built on the basis of At (th
possible hypotheses)

(i) g: A ~[0,1] (the weight function)



Definition
Let T = <At, A, g> be a weight-annotated Poole system, and l&¢ a
consistent formula.

(A) A scenario ofe in Tis a subsetA’ of A such thatA'v{ea} is
consistent.

(B) The weight of a scenaridy’ is
G(A) =X, 9(0) - Zée(A-A’) a(d)

(C) A maximal scenario of in Tis a scenario the weight of which is
not exceeded by any other scenarioc(ofi T).

Definition
o >—7 B iff B is an ordinary conseq. of each maximal scenarw iof T.

An elementary example

At = {p11p21p3}
A ={p;202P2P1° 0P 3P 15P &

some (relevant) scenarios of p : G
{} -1.3
{p1-po} -0.9
{P1 Py P P} -0.7
LSRR PN R o I 1.1 =
P P3, P ~P3 0.9

Consequently, p>-1 P, Py >-77P3
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The semantics of weight-annotated Poole systems

Let T = <At, A, g> be a weight-annotated Poole system, with

At = {py, ..., py}- Furthermore, lev denote a (total) interpretation
function for the propositional languageyLv: At ~ {-1,1}). The usual
clauses apply for the evaluation of the formulas @f L  relatiwe to

[a/AB], = min(a],, [BI,)
[aVP], = max(al,, [B],)
[[NOC]]V - '[[a]]v'

The following defines a function which indicates how strong a giver
interpretationv conflicts with the space of hypothesks

Definition

&(v) =-25.4 9(8) [6], (the energy of the interpretation)

Next, the notions ofmodeland preferred modelcan be defined:

Definition

(A) An interpretationv is called anodelof « just in case[a], = 1.

(B) An interpretatiorv is called greferred modedf o just in case it is
a model ofe with minimal energy (w.r.t. the other modelseof

The following notion is the semantic counterpart to the syntactic
consequence relation >— f:

Definition

o >=7 B iff each preferent model of is a model of 3.

Theorem
For all formulase andp of Lpe: o >~ B Iff o >=; B.
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6 Integrating Poole systems and Hopfield networks

Bringing about the correspondence between connectionist and symbo
knowledge bases, we have first to look for a symbolic representation
information states.

Symbolic representation of information states

Let <Sui, >> be the extended poset of activation states for a neur:
network with n elements.

Definition
The triple <%/1, >,1 1> is called aHopfield model(for L) iff 11 isa
function assigning some element ofu.Sto each atomic symbol and
obtaining the following conditions:

Ta/\BL = 1alelfB), 1~al = -Tal.

A Hopfield model is calledbcal (for L,;) iff it realizes the following
assignments:

1p,} =<10...0>
1p,} =<01...0>
1p,} =<00 ... 1>

With regard to local Hopfield models each state can be represented b
conjunction of literals (atoms or their inner negation);
e.g. <110> =Ap,A\pyt, <11-1>=1p/\pS\~pal.
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Translating Hopfield networks into weight-annotated Poole systems

Consider a Hopfield system (n neurons) with connection matrix w, an
let At = {p;, ..., B} be a set of atomic symbols. Take the following
formulae of Ly, :

ojj = (R - sign(v“ ) p), for ki<j<n

Definition
For each connection matrix w the

apply:
(i) Ay, = {ocij: 1<i<j<n}
(i) gule;) = I |

P2 <1 -ps3

Under certain conditions (no isolated nodes) it can be showredbht
(partial) information state is completed asymtotically. Consequently
ASUP,, (s) contains only total information states. This fact allows us t
prove the following theorem:

Theorem
Assume that the formulae and 3 are conjunctions of literals. Assume
further that the Poole system T is associated to the connection matrix
Then

tal ry, 1pL iff a>1P
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Conclusions

Weight-annotated Poole systems can be used to understa
connectionist systems. Nonmonotonic inferencesxt ) as an
analytic tool to understand emerging properties of connectionis
networks.

Weight-annotated Poole systems are singled out by giving them
"deeper justification".

Connectionist systems can be used to perform nonmonoton
inferences. Efficiency?



14

Appendix: An example from phonology

-back +back
lil u/ +high
lel o/ -high/~low
lee/ [of +low
la/

The phonological features may be represented as by the atomic
symbols BACK, LOW, HIGH, ROUND. The generic
knowledge of the phonological agent concerning this fragment
may be represented as a Hopfield network using exponential
weights with basis 0 € < 0.5. Furthermore, make use of the

following Strong Constraints.

LOW - ~HIGH,; ROUND- BACK
voC 1 /al /il 1o/ N/ /ol lel &/
BACK © + — + + + — —
82 \3
LOW N + - = - + - |+
HIGH _841 o ~— + - [* - [= -
ROUND - - + 4+ [+ = =
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Assigned Poole-system

VOC «¢ BACK; BACK «¢2 LOW
LOW <.+ ~ROUND; BACK < ~HIGH

(These default rules are in strict correspondence to Keane's
markedness conventions)
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