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1 Introduction

H Puzzle: Gap between symbolic and subsymbolic (neuron-like)

modes of processing 

H Aim: Overcoming the gap by viewing symbolism as a high-level

description of  the properties of   neural networks

H Method: standard methods of model-theoretic and algebraic

semantics. Neural (Re)interpretation of information states as

activation states of a neuronal network.

H Main thesis: Certain activities of connectionist networks can be

interpreted  as  nonmonotonic inferences. In particular, there  is a

strict correspondence between Hopfield networks and weight-annot-

ated Poole systems. Extension of Balkenius & Gaerdenfors (1991).
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Intended results

/ Better understanding of connectionist networks:

Nonmonotonic logic  and algebraic semantics  as  descriptive and

analytic tools  for  analyzing their emerging properties

/ New methods for performing nonmonotonic inferences:

Connectionist methods (randomised optimisation: simulated

annealing) can be adopted for realizing symbolic inferences

/ Certain logical systems are singled out by giving them a "deeper

justification".

Overview

1 Introduction

2 A concise introduction to neural networks

3 Information states as neural activation patterns

4 Asymptotic spreading of activation and nonmonotonic inference

5 Weight-annotated Poole systems 

6 The correspondence between symbolic inferences in weight-

annotated Poole systems  and inferences in connectionist networks

(Hopfield nets)



2 A concise introduction to neural networks

General description

A neural network N can be defined as a quadruple
<S,F,W,G>:

S Space of all possible states
W Set of possible configurations. w∈W describes for each

pair i,j of "neurons" the connection wij between i and j
F Set of activation functions. For a given configuration

w∈W a function fw∈F describes how the neuron activities
spread through that network  (fast dynamics)

G Set of learning functions (slow dynamics)

Hopfield networks
Let the interval [-1,+1]
be the working range of
each neuron

+1: maximal firing rate

0: resting

-1 : minimal firing rate

S = [-1, 1] n

wij = wji , wii = 0

Aynchronous Updating:

s i(t+1)  = Θ (Σj wij×sj(t),
    if i = random(1,n)

s i(t+1)  = si(t), otherwise

Step 3 Step 4

Step 98651 Step 98652

Step 1 Step 2
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3 Information states in Hopfield networks

Activation states can be partially ordered in accordance with their
informational content

+1: maximal firing rate indicating maximal
- 1: minimal firing rate $ specification
  0: resting indicating underspecification

Poset of activation states:
 

S = {-1,0,+1}   n

s�t  iff  s�t �0 or s�t �0, i i i i
for all 1�i�n. 

This poset doesn't form a lattice

Extended poset of activation states

S = {-1,0,+1,nil}   n

nil = "impossible activation"
s�t iff s = nil or s�t �0 or s�t �0,i i i i i
for  all 1�i�n.

DeMorgan lattice
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CONJUNCTION  q: simultaneous realization of two states

DISJUNCTION   U: some kind of generalization. 

This fact enables us to interpret activation states as propositional objects
(information states).

4 Asymptotic updates and nonmonotonic inference

The fast dynamics describes how  neuron activities spread through that

network. Hopfield networks (and other so-called resonance systems)

exhibit a desirable property: when given an input state s  the system

stabilizes in a certain state.

Fact 1 (Hopfield 1982)

The function E(s) = -*  w #s #s  is a Ljapunov-function of the system ini>j ij i j
the case of an asynchronous update function f.  I.e., when the activation

state of the network changes, E either

decreases or remains the same. The

output states lim  (f  (s)) can ben��
n

characterized as the local minima of

the Ljapunov-function.

Fact 2 (Hopfield 1982)

The output states lim  (f  (s)) cann��
n

be characterized as the global minima

of the Ljapunov-function if certain stochastic update functions f are

considered ("simulated annealing").
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Definition 1 (asymptotic updates)

ASUP (s) =   {t: t = lim  f (s)}  [f asynchr. updates with clamping]w def n��
n

Definition 2 (E-minimal specifications of s)

min (s) =   {t: t�s and there is no t1�s such that E(t1)<E(t)}E def

Consequence of fact 2
ASUP (s) =   min (s),  where E(s) = �*  w #s #s  w def E i>j ij i j
 (energy function)



7
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w = 0.2  0 -1

  k 0.1  -1  0 r

Example

 E

<1 0 0>   � <1 0 0>  0

 <1 0 1> -0.1

<1 1 0> -0.2

<1 1 1>  0.7
<1 1-1> -1.1   �

ASUP (<1 0 0>) =  min (s)  =  <1 1-1>w E

Definition 3   (Nonmonotonic inference relation)

s  u�  t  iff  s' � t  for each  s' � ASUP (s)  w w

In our example <1 0 0>  u�    <1 1-1> w
<1 0 0>  u�    <0 1 0> w

Fact 3
(i) if s � t, then s u�  t  (SUPRACLASSICALITY) w
(ii) s u�  s (REFLEXIVITY ) w
(iii) if s u�  t and s�t u�  u, then s u�  u (CUT) w  w  w
(iv) if s u�  t and s u�  u, then s�t u�  u (CAUTIOUS MONOTONIC.) w  w  w
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5 Weight-annotated Poole systems

Knowledge base in 

(a) connectionist systems:

• connection matrix 

• energy function

(b) symbol systems

• strong and weak (default-) rules

At least for Hopfield systems there is a strict relationship between

connectionist and symbolic knowledge bases. 

� Symbolic systems can be used to understand connectionist systems.
� Connectionist systems can be used to perform inferences.

Let us consider the  language L  of  propositional logic (refering to theAt
alphabet At of atomic symbols)

Definition 

A triple <At, �, g> is called a weight-annotated Poole system iff

(i) At is a nonempty set (of atomic symbols) 

(ii) � is a set of consistent sentences built on the basis of At (the

possible hypotheses)

(iii) g: � � [0,1]  (the weight function)
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Definition 

Let T = <At, �, g> be a weight-annotated Poole system, and let � be a

consistent formula.

(A) A scenario of � in T is a subset  �1  of  � such that  �1F{�}  is

consistent.

(B) The weight of a scenario �1 is 

G(�1) = *  g(
) - *  g(
)

��1 
�(�-�1)

(C) A maximal scenario of � in  T is a  scenario the weight of which is

not exceeded by any other scenario (of � in T).

Definition 

� §�  � iff � is an ordinary conseq. of each maximal scenario of � in T.T

An elementary example 

At = {p ,p ,p }1 2 3
�  = {p  �  p , p  �  p , p  �  �p }1 0.2 2 1 0.1 3 2 1.0 3

some (relevant) scenarios of p :   G1
{} -1.3

{p  � p } -0.91 2
{p  � p , p  � p } -0.71 2 1 3
{p  � p , p  � �p }  1.1  �1 2 2 3
{p  � p , p  � �p }  0.91 3 2 3

Consequently, p  §�  p , p  §�  ¬p1 T 2 1 T 3
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The semantics of weight-annotated Poole systems

Let T = <At, �, g> be a weight-annotated Poole system, with

At = {p , ..., p }.  Furthermore, let � denote a (total) interpretation1 n
function for the propositional language  L  (�: At � {-1,1}). The usualAt
clauses apply for the evaluation of the formulas of  L   relative to �:At

e�Y�f  = min(e�f , e�f )
� � �

e�Z�f  = max(e�f , e�f )
� � �

e��f  = -e�f . 
� �

The following defines a function which indicates how strong a given

interpretation � conflicts with the space of hypotheses �:

Definition 
 ×(�) = -*  g(
)# e
f    (the energy of the interpretation)


�� �

Next, the notions of  model and  preferred model  can be defined:

Definition 

(A) An interpretation � is called a model of � just in case  e�f  = 1.
�

(B) An interpretation � is called a preferred model of � just in case  it is

a model of � with minimal energy (w.r.t. the other models of �).

The following notion is the semantic counterpart to the syntactic

consequence relation  � §�  �:T

Definition

� §� � iff each preferent model of � is a model of  �.T 

Theorem

For all formulas � and � of  L :  � §�  �  iff � §�  �.At T T
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6 Integrating Poole systems and Hopfield networks

Bringing about the correspondence between connectionist and symbolic

knowledge bases, we have first to look for a symbolic representation of

information states.

Symbolic representation of information states

Let <SF], �> be the extended poset of activation states for a  neural

network with n elements. 

Definition

The triple <SF], �,�¡> is called  a Hopfield model  (for L ) iff  �¡  is aAt
function assigning some element of  SF] to each atomic symbol and

obtaining the following conditions:

��Y�¡ =  ��¡%��¡,  ���¡ =  -��¡.

A Hopfield model is  called local  (for L ) iff it  realizes the followingAt
assignments:

�p ¡ = <1 0 ... 0>1
�p ¡ = <0 1 ... 0>2

 ... 

�p ¡ = <0 0 ... 1>n

With regard to local Hopfield models each state can be  represented by a

conjunction of literals (atoms or their inner negation);  

e.g.  <1 1 0>  = �p Yp ¡,   <1 1 -1> = �p Yp Y�p ¡. 1 2 1 2 3
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Translating Hopfield networks into weight-annotated Poole systems

Consider a Hopfield system (n neurons) with connection matrix w, and

let At = {p , ..., p } be a set of atomic symbols. Take the following1 n
formulae of L : At

�  = (p  � sign(w ) p ), for 1�i<j�nij i ij j

Definition

For each connection matrix w the

associated Poole system is defined as T  =w
<At, � , g > where the following clausesw w
apply:

(i) �  = {� : 1�i<j�n}w ij
(ii) g (� ) = |w |w ij ij

Under certain conditions (no isolated nodes) it can be shown that each

(partial) information state is completed asymtotically. Consequently,

ASUP (s) contains only total information states. This fact allows us tow
prove the following theorem:

Theorem 
Assume that the formulae � and � are conjunctions of literals. Assume

further that the Poole system T is associated to the connection matrix w.

Then     

   ��¡ u�   ��¡    iff   � §�  � w T
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7 Conclusions

� Weight-annotated Poole systems can be used to understand

connectionist systems. Nonmonotonic inferences ( � §�  �) as anT
analytic tool to understand emerging properties of connectionist

networks.

� Weight-annotated Poole systems are singled out  by giving them a
"deeper justification".

� Connectionist systems can be used to perform  nonmonotonic
inferences. Efficiency?
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Appendix: An example from phonology

 �back +back

 /i/  /u/  +high

 /e/  /o/  �high/�low

 /æ/  /@/

 /a/
 +low

The phonological features may be represented as by the atomic
symbols BACK, LOW, HIGH, ROUND. The generic
knowledge of the phonological agent concerning this fragment
may be represented as a Hopfield network using exponential
weights with basis 0 < J � 0.5. Furthermore, make use of the
following  Strong Constraints:

LOW � �HIGH;   ROUND � BACK
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Assigned Poole-system

VOC �J  BACK; BACK �J  LOW 1 2

LOW �J  �ROUND; BACK �J  �HIGH 4 3

(These default rules are in strict  correspondence to Keane's
markedness conventions)
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