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Abstract

A puzzle in the philosophy of mind concerns the gap between symbolic and
subsymbolic (neuron-like) modes of processing (e.g. Smolensky 1988). The
aim of this paper is to overcome this gap by viewing symbolism as a high-
level description of the properties of (a class of) neural networks. Combining
methods of algebraic semantics and nonmonotonic logic, the possibility of in-
tegrating both modes of viewing cognition is demonstrated. The main results
are (I) that certain activities of connectionist networks can be interpreted
as nonmonotonic inferences, and (II) that there is a strict correspondence
between the coding of knowledge in Hopfield networks and the knowledge
representation in weight-annotated Poole systems. These results (a) show
the usefulness of nonmonotonic logic as a descriptive and analytic tool for
analyzing emerging properties of connectionist networks, (b) single out cer-
tain logical systems by giving them a “deeper justification”, and (c) pave the
way for using connectionist methods (e.g. “simulated annealing”) in order to
perform nonmonotonic inferences.

1 Introduction

There is a gap between two different modes of computation: the symbolic mode
and the subsymbolic (neuron-like) mode. Complex symbolic systems like those of
grammar and logic are essential when we try to understand the general features
and the peculiarities of natural language, reasoning and other cognitive domains.
On the other hand, most of us believe that cognition resides in the brain and
that neuronal activity forms its basis. Yet neuronal computation appears to be
numerical, not symbolic; parallel, not serial; distributed over a gigantic number of
different elements, not as highly localized as in symbolic systems. Another aspect is
that the brain is an adaptive system that is very sensitive to the statistical character
of experience. Hard-edged rule systems are not suitable to deal with this side of
behavior. A unified theory of cognition must overcome these gaps and must assign
the proper roles to symbolic, neural and statistical computation (e.g. Smolensky
1988, 1996; Balkenius & Gardenfors 1991).

The aim of this paper is to demonstrate that the gap between symbolic and
neuronal computation can be overcome when we view symbolism as a high-level de-
scription of the properties of (a class of) neural networks. The important method-
ological point is to illustrate that the instruments of model-theoretic (algebraic)
semantics and nonmonotonic logic may be very useful in realizing this goal. In this
connection it is important to stress that the algebraic perspective is entirely neutral
with respect to fundamental questions such as whether a “content” is in the head or
is a platonic abstract entity (cf. Partee with Hendriks 1997, p. 18). Consequently,
the kind of “psychologic” we pursue here isn’t necessarily in conflict with the general
setting of model-theoretic semantics.

Information states are the fundamental entities in the construction of propo-
sitions. In the next section we interpret information states as representing states
of activations in a connectionist network. In section 3 we consider how activation
spreads out and how it reaches, at least for certain types of networks, asymptoti-
cally stable output states. Following and extending ideas of Balkenius & Gardenfors
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1991, we show that the fast dynamics of the system can be described asymptoti-
cally as a nonmonotonic inferential relation between information states. Section 4
introduces the notion of weight-annotated Poole systems; and section 5 explains
in which way these systems bring about the correspondence between connectionist
and symbolic knowledge bases.

2 Information states in Hopfield networks

A neural network is a system of connected units (“neurons”). Fach unit has a
certain working range of activity. Let this be the set {—1,0,4+1} (+1: maximal
firing rate, 0: resting, —1: minimal firing rate). A possible state s of the system
describes the activities of each neuron: s € {—1,0,4+1}", with n = number of units.
A possible configuration of the network is characterized by a connection matriz w.
Hopfield networks are characterized by symmetric configurations and zero diagonals
(wi; = wyi, wy; = 0). The fast dynamics describes how neuron activities spread
through that network. In the simplest case this is described by the following update
function:

f(s); =© Z Wij - 55 (© a nonlinear function). (1)
J

Let us interpret activations as indicating information specification: the activa-
tions +1 and —1 indicate maximal specification, the resting activation 0 indicates
underspecification. Generalizing a notion introduced by Balkenius & Gardenfors
1991, the set S = {—1,0,+1}" of activation states can be partially ordered in
accordance with their informational content:

s>t iff 5, >, >0 0r 5; <¢; <0, foralll<i<n (2)

s >t can be read as s is at least as specific as t. The poset (S, >) doesn’t form a
lattice. However, it can be extended to a lattice by introducing a set L of impossible
activation states: L. = {—1,0,4+1,nil}"™ — S, where nil designates the “impossible”
activation of a unit. It can be shown that the extended poset of activation states
(SU L,>) forms a DeMorgan lattice: Replace the former definition (2) of the
informational ordering by the following:

s>t iff s; =nil or s, >t >0 or 5, <¢;<0, forall<i<n (3)

CONJUNCTION o can be interpreted as simultaneous realization of two activation
states, DISJUNCTION & as some kind of generalization. This fact enables us to
interpret activation states as propositional objects (“information states”).

3 Asymptotic updates and nonmonotonic inference

In general, updating an information state s may result in a information state
f...f(s) that doesn’t include the information of s. However, for the following
it is important to interpret updating as specification. If we want s to be informa-
tionally included in the resulting update, we have to “clamp” s somehow in the
network. A technical way to do that has been proposed by Balkenius & Gardenfors
1991. Let f designate the original update function (1) and f the clamped one,
which can be defined as follows (including iterations): B

fls) = [f(s)os (4)
["s) = F([1()os




Hopfield networks (and other so-called resonance systems) exhibit a desirable
property: when given an input state s the system stabilizes in a certain state (it is
of no importance here whether the dynamics is clamped or not). Thus, the following
set of asymptotic updates of s is well-defined:

ASUP,(5) = {t: ¢ = lim " (5)} (5)
Under certain conditions (asynchronous, stochastic updates) the function
E(S):_Zwij'si'sj (6)
i>j
is a Ljapunov function (energy function) of the dynamic system (Hopfield 1982).

This enables us to characterize the asymptotic updates of s as those specifications
of s that minimize E:

ASUP,, (s) = ming(s) (7)

The notion of asymptotic updates naturally leads to a nonmonotonic inferential
relation (between information states):

5 P iff s’ >t for each s’ € ASUP, (s) (8)

With the help of the equivalence (7), the usual traits of nonmonotonic conse-
quence relations can be shown:

Supraclassicality: if s >, then s |~ ¢ (9)
Reflexivity: S pew s
Cut: if s poy t and s ot vy u, then s by
Cautious Monotonicity: if s vy ¢t and s pvy u, then s ot vy u

This corresponds to results found by Balkenius & Gardenfors 1991, who have
considered information states for the case that they form a Boolean algebra.

4 Weight-annotated Poole systems

In connectionist systems knowledge is encoded in the connection matrix w (or,
alternatively, the energy function E). Symbolic systems usually take a default logic
and represent knowledge as a database consisting of expressions having default
status. A prominent example of such a framework has been proposed by Poole (e.g.
Poole 1988, 1996). In this section, we introduce a variant of Poole’s systems, which
we will call weight-annotated Poole systems. This variant will be proven to be useful
for relating the different types of coding knowledge (see section 5).

Let us consider the language L 4 of propositional logic (referring to the alphabet
At of atomic symbols). A triple T' = (At, A g) is called a weight-annotated Poole
system iff (1) A is a set of consistent sentences built on the basis of At (the possible
hypotheses); (ii) g: A — [0, 1] (the weight function). A scenario of a formula a in
T is a subset A’ of A such that A’U {a} is consistent. The weight of a scenario A’
is

GA) =D g(6) = > g(9) (10)



A mazimal scenario of a in T is a scenario the weight of which is not exceeded
by any other scenario (of o in T'). With regard to a weight-annotated Poole system
T, the following cumulative consequence relation can be defined:

iff 3 is an ordinary consequence of each maximal

a>-rf scenario of o« in T’ (11)

It is important to give a preference semantics for weight-annotated Poole sys-
tems. This preference semantics may be seen as the decisive link for establishing
the correspondence between connectionist and symbolic systems.

Let v denote an ordinary (total) interpretation for the language La; (v: At —
{=1,1} ). The usual clauses apply for the evaluation of the formulas of L 4; relative
to v. The following function indicates how strong an interpretation v conflicts with
the space of hypotheses A:

E(v) = —Z g(0) - [0y (call it the “energy” of the interpretation) (12)
SEA

An interpretation v is called a model of « just in case [a], = 1. A preferred
model of « is a model of & with minimal energy & (with regard to the other models
of @). As a semantic counterpart to the syntactic notion & D—p 3, let us take the
following relation:

a D=7 0 iff each preferred model of « is a model of 3 (13)

As a matter of fact, the syntactic and the semantic notions coincide. (A proof
can be found in Blutner 1997).

5 The correspondence between Hopfield networks
and weight-annotated Poole systems

Bringing about the correspondence between connectionist and symbolic knowledge
bases, we have first to look for a symbolic representation of information states. Let
us again consider the propositional language L 4;, but let us now take this language
as a symbolic means to speak about information states. Following usual practice
in algebraic semantics, we can do this formally by interpreting (some subset of
the) expressions of the propositional language by the corresponding elements of the
DeMorgan algebra (SU L, >). More precisely, let us call the triple (SU L, >11)
a Hopfield model (for L4¢) iff 1] is a function assigning some element of SU L to
each atomic symbol and obtaining the following conditions: (a AB|=1a] o115 ];
I~a|=—Tal] (“=” converts positive into negative activation and vice versa).

A Hopfield model is called local (for L 4¢) iff it realizes the following assignments:
1prl=00...0), 1p2|={(01...0), ..., 1pn | =(00...1). With regard to local
Hopfield models each state can be represented by a conjunction of literals (atoms
or their inner negation); e.g. {1 10) =1p1 Apal, (11 =1) =1p1 ApaA ~psl|. In
other words, in the case of local models each information state can be considered
as symbolic.

Local Hopfield models give the opportunity to relate connectionist and symbolic
knowledge bases in a way that allows to represent nonmonotonic inferences in neural
(Hopfield) networks by inferences in weight-annotated Poole systems. The crucial
point 1s the translation of the connection matrix w into an associated Poole system
Tw. Let us consider a Hopfield system (n neurons) with connection matrix w, and
let At = {p1,...,pn} be a set of atomic symbols. Take the following formulae «;;
of La;:



aij =dey (pi > sign (wiz) p;)  for 1 <i<j<n (14)

For each connection matrix w the associated Poole system 1s defined as T, =
(At, Ay, guw), where the following clauses apply:

a. Ay ={a;: 1<i<j<n} (15)
b gu(aij) =|wi

Updating information states came out as a kind of specification in section 3.
Under certain conditions (no isolated nodes) it can be shown that each (partial)
information state is completed asymptotically. Consequently, ASUP,,(s) contains
only total information states. Together with the equivalence (7) and the definitions
(12) & (13), this fact allows us to prove that nonmonotonic inferences based upon
asymptotic updates can be represented by inferences in weight-annotated Poole
systems:

Theorem

Assume any formulae o and 8 that are conjunctions of literals. Let the
Poole system T be assoctated with the connection matrix w. Then

Tal pw 151 iff o >=p 8 (iff @ D-7 3).

This result shows that we can use nonmonotonic logic to characterize asymptoti-
cally how neuron activities spread through the connectionist network. In particular,
a weighted variant of Poole’s logical framework for default reasoning has proven to
be useful. One possible application of the correspondence may be the use of con-
nectionist techniques to perform nonmonotonic inferences (“simulated annealing”,
cf. Derthick 1990).

Finally, we should stress that our primary aim was a methodological one: the
demonstration that model-theoretic semantics may be very useful for analyzing
(emerging properties of) connectionist networks. Admittedly, the results found
so far are much too simplistic to count as a real contribution to closing the gap
between symbolism and connectionism. What is important, in our view, is to get
an active dialog between the traditional symbolic approaches to logic, information
and language and the connectionist paradigm. Perhaps, this dialog may shed new
light on old notions like partiality, updates, underspecification, learning, genericity,
homogeneity, salience, probabilistic logic, randomized computation, etc.
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