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1 Abstract

A Bayesian computational model is described, which is able to learn the meanings of basic colour terms from
positive examples. Examples of colours named by particular colour terms are stored in a conceptual colour
space, and Bayesian inference is used to determine the probability that other colours come within the range of
each colour term. A fuzzy set based denotation for each colour term can be created by calculating the
probability that each point in the colour space comes within the extension of each colour term. The learned
categories show the prototype structure characteristic of colour terms, with there being a single best example
of the category, marginal members of the category, and with intermediate colours being members of the
category to a greater or lesser extent. This approach has the advantage over previous approaches of being
both flexible, and so being able to account for the full range of observed colour term systems, but also of
providing a precise and explicit account of colour term semantics. The model is able to account not only for
the meanings of colour terms, but also for the acquisition of those meanings. Further work aims to incorporate
innate biases into the model, so that it is able to account for observed typological patterns, and the learning
biases of human subjects.

Key words: basic colour terms, prototype categories, semantic acquisition, Bayesian inference, fuzzy sets.

2 Introduction

This paper describes a theoretical proposal about the nature of basic colour terms. The proposal
concerns not only the nature of a speaker’s knowledge of the semantics of such words, but also how
a person may learn the meanings of such words. There has been much work on the subject of such
words in both linguistics and psychology, as well as in related disciplines, but the present work has
the advantage of both being able to account for a wide range of colour term systems, while providing
an explicit account of the acquisition of basic colour terms which has been implemented as a
computational model.

Every language has words for colours, but in different languages words denote different ranges of
colour, so that for a colour term in one language there will not always be a word in another language
with exactly the same meaning. Berlin and Kay (1969) identified a subset of colour words which
they called basic colour terms. These words are colour terms which are monomorphemic, and whose
extension is not included in that of any other colour term. They must not be restricted to apply only
to a narrow class of objects, and  must be psychologically salient (that is, they must be prominent
within the range of colour terms known by an individual, and be known by all speakers of a
language). Berlin and Kay determined from a sample of 98 languages that all l anguages have
between two and eleven such words (although it is possible that some languages have twelve, as
there are some marginal examples).
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2.1 The Nature of Colour

It is clear that the extension of a colour term does not consist of objects with just one specific colour,
but in fact extends to objects which have any one of a range of similar colours. So in order to
understand the denotations of colour terms, we must consider the nature of colour, so that we may
determine how such a range of colours could be specified. Firstly, we may consider the physical
properties of light, and how these properties vary between light of different colours. Light waves of
different colours have different wavelengths. Red light has the longest wavelength, with orange,
yellow green, blue and purple having increasingly shorter wavelengths. However, light can be made
up of a mixture of these colours, and can occur at varying intensities. Hence the perceived
phenomenological colour of light depends on which wavelengths are present, and on the intensity of
each wavelength. Colours form a continuous range with red at one extreme and blue at the other
(Thompson, 1995).

However, the fact that light has such a physical structure, does not mean that this is the form in
which the nervous system processes colour. In fact, only three types of receptor cell have been
identified in the retina of the eye, and each type responds differentially to light of a given
wavelength. (I am referring here to the cells known as cones; the retina also contains cells called rods
which are believed not to play an important part in colour vision.) Each type of cell is maximally
active when presented with light of a particular wavelength, and its activity decreases gradually as
light a of greater or lesser wavelength is presented. So, while physical light has the property of
having a continuous range of wavelengths, the eye only senses colour in terms of how close the
frequency of light reaching the eye is to the focal frequency of each of these three types of cell, and
how intense it is (Thompson, 1995).

Further research has traced the neurophysiological pathway of information about the colour of light
as it is processed by the nervous system, and has identified a particular class of cells known as
opponent cells. These cells process the output of the cones to produce a signal based on a
combination of the output of these cells. Some cells oppose green and red light, and so respond most
in the presence of green and absence of red wavelengths. Other cells also oppose green and red light,
but have opposite responses, responding most in the presence of red wavelengths and absence of
green ones. Similarly, there are two types of cells which oppose blue and yellow light, each type
responding most in the presence of wavelengths of one colour and the absence of wavelegnths of the
other colour. These cells hence map the input light onto a two dimensional colour space, as is shown
in Figure 1. The color of light will be determined by its degree of blueness or yellowness,
corresponding to the horizontal axis, and its degree of redness or greenness, corresponding to the
vertical axis. A third kind of opponent cell has also been postulated, which would oppose light and
dark light, and so create a third dimension of lightness (Kay and McDaniel, 1978).
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Figure 1. The Two Dimensional Colour Space

So far I have discussed the nature of colour from the perspective of its physical structure, and
neurophysiological evidence as to how people process it, but we may also consider psychological
and phenomenological evidence as to the nature of colour. While physically red has the longest
wavelength of any colour of visible light, and purple the shortest, phenomenologically red and purple
are similar colours, and there are some colours which could be considered as marginal examples of
both red and purple. There has been much research on colour from psychological and
phenomenological perspectives, and general consensus has been reached that, phenomenologically,
colour has a three dimensional structure, which more closely relates to the properties of opponent
cells than to both the physical structure of light, and to earlier stages of neurophysiological
processing (Thompson, 1995).

The three dimensions used in describing the phenomenological structure of colour are hue,
saturation, and lightness. Firstly, lightness corresponds to how bright or dark a colour is, and
corresponds closely to the postulated light and dark opponent cells. The dimension of hue identifies
the property of light which changes continuously from red to orange, yellow, green, blue and then
purple, and finally back to red again. This dimension is orthogonal to that of lightness, and is also
circular, as if one progresses along it in one direction, no matter where the start point is, the original
hue will eventually be reached. Hue corresponds partly to the two dimensional neurophysiological
colour space represented in Figure 1, though that colour space also encompasses the
phenomenological dimension of saturation. The dimension of saturation corresponds to how vivid, or
undiluted a particular colour is, irrespective of its hue. At a level of zero saturation, all colours are
black, white or grey, varying only on the lightness dimension, not on the dimension of hue. At all
other levels of saturation, a colour may have any hue, with saturation reaching a maximum when
colours are at their most vivid, for a given hue and lightness. These two dimensions are shown in
Figure 2, which illustrates how saturation may be considered a radial dimension, and hue a circular
one. The dimension of lightness is orthogonal to both these dimensions.
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Figure 2. The Phenomenological Dimensions of Saturation and Hue

The three dimensional colour structure based on the dimensions of hue, saturation and lightness
corresponds to how people describe the experience of colour, and how they categorise colours. It also
appears to be the colour structure which allows the best and most concise description of the
extensions of colour terms, and which has hence has been adopted as the system used in almost all
investigations into basic colour terms. I now move on to consider a number of theoretical approaches
to the semantics of such words, many of which share much in common with the approach used in this
paper, but all of which have at least some important differences.

2.2 Approaches to Colour Term Semantics

Often language semantics are explained using a feature-based approach. The meaning of a word will
be explained in terms of necessary and sufficient features. So the meaning of a word such as
bachelor would be decomposed into the features, man and unmarr ied, which together are both
necessary and sufficient for determining the property of being a bachelor. These features may
themselves be  decomposed into more primitive elements, for example man could be decomposed
into two-legged and mammal. This approach is fairly successful at capturing the meaning of words
such as bachelor, as there is a clear distinction between things in the world which are bachelors, and
those which are not. However, it is diff icult to see how such an approach could be useful in
understanding the meaning of words such as colour terms.

Taylor (1989) notes that colours terms are an example of prototype categories. For any colour term,
say English blue, speakers can readily identify a single best example colour for this term, what is
called a prototype. Colours similar to this best exemplar will be considered good or bad examples of
the colour term to a varying degree, depending on how similar they are to the prototype. Colours
which are more dissimilar to the prototype are considered worse examples of the colour term than
those which are more similar. Clearly, a point will be reached where a colour is so dissimilar to the
prototype that it is no longer an example of the colour term at all, and instead comes within the
denotation of a neighbouring colour. However, colour terms also exhibit another property typical of
prototype categories, that there are some examples about which it is diff icult to determine whether
they come within the denotation of the term at all . These wil l be colours towards the periphery of the
category, and there is often disagreement between speakers about which colour term is the correct
one to name such colours.

Central to prototype theory (Taylor, 1989), is the idea that the prototype plays a role in determining
which objects (or colours) come within a category, and which do not. However, exactly how the
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prototype defines the extent of the category is usually not made explicit. Probably the most explicit
prototype approach to colour term semantics is that of Lammens (1994). Lammens defines a colour
category by specifying the category’s prototype, and the size of the category. The degree of
membership of a colour in the category depends on its distance from the focus, and the size of the
category is determined by a numeric parameter specifying how rapidly the degree of membership in
the category decreases as the distance from the focus increases. Lammens also proposes that his
model can form the basis of an account of how the meanings of colour terms can be learned.
However, I think in this respect there are some problems with his model, which also have
implications for whether the prototype approach is the correct way to define colour categories.

Lammens’ model does not specify how a language learner can establish the foci of colour categories.
Instead it is assumed that these must be fixed, presumably innately (p. 143), and learning wil l then
consist of determining the extent of the colour category. Hence, the parameter adjusted during
learning simply adjusts the size of the category, and can neither affect the location of its focus, nor its
shape. This seems somewhat problematic, as typological evidence seems to suggest that not all
categories have universally determined foci, and the shape of categories, and hence exactly where
their boundaries are, certainly varies between languages. For these reasons I believe that Lammens’
work illuminates some of the most problematic aspects of the prototype approach to linguistic
categories.

I am aware of only one other computational model of colour term semantics, and that is the work of
Honkela (1997). Honkela uses self-organising maps, which can be seen as a form of neural network,
to learn the meanings of colour terms from examples. Honkela’s model is motivated partly by
neuropsychological evidence, but it takes little account of the specific literature on colour perception
and colour terms. Instead of basing the input to the model on the phenomenological dimensions of
hue, saturation and brightness, the input is based on red, green and blue components of colours, such
as are used by computers in generating colours for display on a monitor. Hence it seems unlikely that
Honkela’s model will account particularly well for psychological and linguistic data on colour
terms1. However, it seems that self-organising maps may well prove useful in the computational
modell ing of colour term semantics, and provide an interesting alternative both to prototype
approaches, and to the approach taken in this paper.

Other than computational approaches, perhaps the most explicit approach to colour term semantics is
that of Kay and McDaniel (1978). Instead of using a strictly prototype approach, such as that of
Lammens, they give colour categories an interpretation in terms of fuzzy sets. Fuzzy sets are sets
where the elements in the set can be members to a greater or lesser degree, varying from one (full
membership) to zero (not a member of the set at all.). A fractional number between one and zero
indicates that an element is a member of the set to an intermediate degree.

In Kay and McDaniel’s approach, the prototype of a colour category is given a membership value of
one, and the degree of membership in the set decreases the further away a colour is from this
prototype. The membership functions, which peak at the prototype, and decrease on either side, are
based on the response functions of opponent process cells in the retina of the eye. As the category
membership functions, and hence the category prototypes, are determined innately by neural
response functions, there is little room for cross-linguistic variation, or in fact of learning of category
structure at all. While Kay and McDaniel propose that composite categories can be derived from the
fuzzy union of the sets defined by the response functions of more than one type of opponent cell, and
non-primary categories (such as brown and purple) from the fuzzy intersection of the response

                                                       
1 I should note here that the primary purpose of Honkela’s work was concerned with language technology, and not
cogniti ve modeling, so it is unsurprising that it does not take account of psychological and neurophysiological data.
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functions, otherwise the colour categories are universally determined by the response functions of the
opponent cells.

Hence Kay and McDaniel’s approach is problematic, as the location of the foci of secondary colour
terms, and of the boundaries of all colour terms, appears to vary between languages, and so
presumably must be determined, at least in part by learning. Also, there does not seem to be any
reason why the degree of membership in a colour category should relate in any direct way to the
neural response functions of cells in the retina, and so a model based on this assumption might be
considered somewhat unlikely a priori. The model presented in this paper also makes use of the
fuzzy sets approach, but the shape of the membership functions of the sets defining the denotation of
the colour terms is determined by learning from examples, and not from innate neural responses.

3 Bayesian Approaches to Psychology and Linguistics

The computational model used in this paper uses a form of Bayesian inference to learn semantic
representations for colour terms. In this section, I will justify why it is plausible that such a model
may give an accurate account of how people learn the meanings of basic colour terms. The primary
reason for supposing that people may use Bayesian inference to learn basic colour terms is that there
are many other psychological phenomena which appear to be best explained using Bayesian
inference.

Firstly, Brent and Cartwright (1997) have used a Minimum Description Length based model to
account for how children can simultaneously learn to segment speech, and to begin the process of
lexical acquisition. He has shown that such an approach could allow children to make rapid progress
in this task, and so it is plausible that they use some such strategy to aid in learning to segment
speech and acquire a lexicon. Minimum Description Length can be seen as a version of Bayesian
inference, and so such approaches suggest that Bayesian models may well give a good account of
other aspects of psychology. Huttenlocher, Hedges and Vevea (2000) show that, at least in some
circumstances, people appear to use Bayesian inference to improve accuracy in judging inexactly
represented stimuli. Dowman (2000) has shown how Bayesian based inference (in this case
Minimum Description Length) can aid in the acquisition of syntax, and in particular can account for
the acquisition of the subcategorizations of many verbs. Finally, Ellison (1992) has shown how
similar learning algorithms can account for the acquisition of many aspects of  phonology.

Although the above is a very brief overview of some of the work in psychology and linguistics which
makes use of Bayes’ theorem, the implication of such work is that many psychological processes
may have a Bayesian basis, and so it seems likely that this wil l also be true of the acquisition of basic
colour terms. Hence this suggests that it is worthwhile investigating what properties basic colour
terms would have if they were learned using Bayesian inference. If a Bayesian model of colour term
semantics corresponds well with observations made concerning colour terms, then it will be good
evidence that people do learn colour term semantics using some form of Bayesian inference.

I now want to describe in a little more detail one paper by Tenenbaum and Xu (2000), and another by
Griffiths and Tenenbaum (2000), as these two papers are closely related to approach taken in this
paper. Tenenbaum and Xu, in common with the approach of this paper, used Bayesian inference to
model the acquisition of word meanings. The model predicted that the meaning that people would
attribute to a word would depend on the number and type of examples of its use they had observed,
which corresponds well with empirical findings. For example, the model predicted that if a person
observed a word being used to refer to a dog, and that was the only example of the use of that word
which they observed, then they would be unsure whether the extension of this word corresponded to
the set of all dogs, the set of all animals, or just the particular dog referred to. However, after seeing
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several examples, all of which were dogs, the model was almost certain that the word’s extension
was the set of dogs. Alternatively, after seeing examples consisting of three different kinds of animal,
the model would be almost certain that the word denoted the set of animals, or after seeing several
different examples of the same dog, the model would become almost certain that the word denoted
only the particular dog. This work demonstrates how Bayesian inference may be used to learn word
meanings from only positive examples of the use of a word, and Tenenbaum and Xu were also able
to demonstrate that the generalizations made by their model were very similar to those made by
people when presented with the same evidence.

The Bayesian model which is most closely related to the work in this paper, is that of Griffiths and
Tenenbaum (2000), although their work is not itself concerned with word meanings, or with
language at all. Griffiths and Tenenbaum investigate how people can predict the frequency with
which some event occurs, based on observations of how long since it last occurred. For example, if
people are told that on arrival at a subway station it has been 103 seconds since the last train arrived,
then they wil l guess that it is most likely that trains run every few minutes, consistent with the
predictions of the Bayesian model. However, if they are then told that on two subsequent visits to the
subway station it has been 34 seconds, and then 72 seconds since the last train arrived, then they are
likely to believe that trains run with a frequency much closer to 103 seconds. Again this is consistent
with the predictions of the Bayesian model. Within the model, hypotheses correspond to how often
trains arrive at the station. The single most likely hypothesis will be that which is large enough to
include just the arrival times of all the trains, but the model finds the time such that it is equally
likely that the true interval between trains is greater than or less than this time. Hence the value
inferred for the length of time between when trains arrive, will always be greater than the longest
observed time elapsed since a train arrived. However, as more data is observed, the inferred interval
will get closer to the highest observed time, as with more observations it is more likely that at least
one of the observed times comes close to the maximum time that may elapse between arrivals of
trains.

The reason that the approach to colour term semantics presented here is similar to Griffiths and
Tenenbaum’s approach to inferring the frequency of events, is that both colour and time can have
continuously varying values. Hence, we can use numeric scales to represent dimensions in the colour
space, in much the same way as Griff iths and Tenenbaum used such a scale to represent time. The
following section describes the model of colour term semantics in detail .

4 A Bayesian Model of the Acquisition of Colour Term Semantics

The computational model proposed here is an account of how the semantics of colour terms may be
learned from a finite number of examples. It assumes that, during the time when a person is learning
their language, they wil l observe a finite number of examples of the use of a colour term, and wil l be
able to determine the colour of the object referred to using the colour term on at least some of these
occasions. It is these occasions, when a language learner matches a colour term to an example colour
named by that term, which provide the input to the process of acquisition. Hence the data from which
the model wil l learn the meanings of colour terms is a set of examples of specific colours, and each
such example wil l be paired with a word thought to denote that colour.

4.1 Pre-Linguistic Processes and Representations
Before it is possible to propose a model of the acquisition of the meanings of colour terms, it is first
necessary to determine what form the pre-linguistic input to the process of acquisition will take.
Clearly people must be able to perceive colours before they are able to learn the meaning of colour
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terms which denote ranges of colour2.  Hence, in order for a person to acquire the meaning of colour
terms, there must be processes which, taking as their input the physical light wave entering the eye,
process this signal to form a representation of the colour which may serve as input to linguistic
processes3. As noted above, the relationship between the physical properties of light entering the eye,
and the perceived colour is not simple, and must be moderated by a number of intervening processes.
Much is known about the physiology of the colour system, and there are a number of theories to
account for phenomena such as perceived colour constancy despite varying illumination (see for
example Land (1977)). However, this paper is not concerned with such processes; it is simply
assumed that such processes exist, and that they are able to map from physical colours to a
representation corresponding to phenomenological colour.

As noted above, phenomenologically colour has a three dimensional structure, varying on the
dimensions of hue, saturation and lightness. At present, the acquisitional model is concerned only
with the hue dimension. If only colours of maximum saturation, and the degree of lightness at which
maximum saturation may be achieved are considered, then these colours will be arranged in a one
dimensional colour space as shown in Figure 3. If, starting from any given hue, this hue is repeatedly
changed to a neighbouring hue in a  consistent direction, eventually the initial hue will be returned to
after going through all the other hues for the chosen saturation and brightness.

Figure 3. The Phenomenological Colour Space

The model assumes that prior to language learning such a colour space is available to a language
learner, and so they wil l know (at least subconsciously) that, for example, red is more similar to
purple than it is to blue.

Clearly, colour terms denote colours corresponding to three dimensional volumes of the colour
space, and not simply to parts of a one dimensional colour space.  It is hence an assumption of the
                                                       
2 It should be noted that an exception to this is the acquisition of colour terms by congenitall y blind children. Landau and
Gleitman (1985; cited in Bloom, 2000) found that  blind children’s knowledge of colour words was in many respects
similar to that of sighted children of the same age. For example they were aware that colour words belong to a single
domain, and that they apply only to concrete objects, as well as being aware that they denoted a property which the
children themselves could not identify. While it seems that in these circumstances many aspects of the meaning of colour
terms may be acquired, the most central aspect of the meaning of colour terms, that is their denotation of certain ranges
of colour, cannot be acquired in such circumstances. This evidence does however suggest that contextual and morpho-
syntactic cues may be an additional source of evidence used by children in determining the meaning of colour terms,
although such cues are not at present utilized by the model proposed here.
3 For present purposes it is assumed that such processes are in place before language learning begins. It is of course
possible that significant development of such processes may take place during the acquisition of the meaning of colour
terms, but it is assumed here that it is unlikely that such effects will have a major impact on colour term acquisition, and
so may be ignored.
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present model that colour term acquisition may be usefully modelled when considering only a single
dimension of the colour space. This assumption is made for the purposes of simplicity only, and
there is no reason to suppose the model should not be extensible to operate over the full three
dimensional colour space. However, this restriction means that the model wil l be concerned only
with the chromatic colour terms. The meanings of achromatic terms such as black, white and gray
cannot be learned with the present model, and nor can the model distinguish between colour terms
which differ principally on the dimension of lightness, for example red and pink. The model is,
however, able to give an account of the acquisition of aspects of meaning determined by differences
on the dimension of hue, such as those between red, orange, yellow, green, blue, and purple, and
many other terms in other languages.

When a learner observes a colour term example, it will be represented as a point in the
phenomenological colour space, and this point will be labelled with the colour term itself. For the
purposes of the model, hues will be numbered using an arbitrary numbering scheme, with its origin
(zero) being in the red space, and increasing through orange, yellow, green, blue and purple, up to
hue 99, which will again be in the red space, adjacent to hue 0. Using this scheme, it is possible to
represent instances of observations of colour terms simply by a pairing of the colour term and the
corresponding hue number.

4.2 Generalization from Examples to Other Colours
So far, the form of the model’s conceptual colour space, and the representation of observed colours
has been described. However, this does not address the issue of how people wil l assign names to
previously unseen colours, when those colours are observed in the absence of a linguistic label. The
model uses Bayesian inference to determine how likely it is that a given colour term is a correct label
for a particular colour, generalising from the examples of the use of that colour term already
remembered by the model.

Within the context of Bayesian inference, a hypothesis will be a specification of which colours can
be correctly labelled with a given colour term, and the observed data will be the set of example
colour terms which the model has remembered having been labelled with the colour term under
consideration. Bayes’ theorem, as given in (1) will be used to determine how likely each given
hypothesis is given the observed data, but to do this it is first necessary to specify what the possible
hypotheses are, and how likely each one is a priori (P(h)), and how to determine how likely it is that
any given set of colours will be observed to have been labelled with the colour term in question,
when assuming that a specific hypothesis is correct (P(d | h)).

(1) 
)(

)()|(
)|(

dP

hPhdP
dhP =

4.2.1 Possible Hypotheses and their a Priori Probabilities

Hypotheses as to the denotation of a colour term all correspond to a continuous section of the
phenomenological colour space, as shown in Figure 4 below. Each hypothesis will have a start point,
s, and an end point, e. A hypothesis states that a colour is a correct label for all and only those
colours which fall after the start point, and before the end point, when the colour space is followed
clockwise. Each of these points can be referenced using the numbering scheme for the
phenomenological colour space described above. Hence, the size of the colour space denoted by a
colour term corresponding to a particular hypothesis wil l be given by (e-s). In the case where the
range of the colour term encompasses the origin, then 100 (the size of the phenomenological colour
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space) must be added to e, as in this case the value of e would otherwise be less than s, resulting in a
negative value for the size of the colour space denoted by that term.

Figure 4. A Hypothesis as to the Denotation of a Colour Term

A hypothesis may begin anywhere within the phenomenological colour space, and may end
anywhere within this space. All possible start points are considered equally likely a priori, as are all
possible end points given any particular start point. Hence, there will be a continuous space of
hypotheses, and hypotheses will range in size from not including any of the colour space at all, to
including the whole of the colour space, with all sizes of hypothesis being considered equally likely a
priori.

4.2.2 The Probability of Data given a Hypothesis

Given the above specification of hypotheses, it is now necessary to specify how probable it is that the
remembered colour examples labelled by the current colour term would have been observed given a
particular hypothesis. This will specify how to calculate the term P(d | h)  from equation (1) above.

It is assumed first that language learners make no a priori assumptions that certain colours are more
likely to be named by colour terms than are other colours. This assumption is probably not entirely
accurate, as certain colours are almost certainly more frequent in a person’s environment than others,
and linguistic reference to some colours is likely to fulfil greater purpose than reference to others,
and so for these reasons we would not expect all colours to be named with equal likelihood.
However, as in the present simulations all colours are equally likely to be named, this seems a
reasonable assumption to make. In an environment where this was not the case, it seems that learners
would have to take account of this factor, and adjust their learning strategy appropriately. Certainly
there seems to be no reason why the model could not be extended to take account of such factors, but
for present purposes this added complexity seems unnecessary..

Further issues concern how a given colour example comes to be paired with a given colour term.
Such examples would be derived primarily by a person observing the use of a colour term, and
inferring the entity, the colour of which the colour term was being used to identify. The learner
would then pair the colour term with the perceived colour, and remember this pair for later reference.

  0

  extent of colour term

  start

end
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4.2.2.1  Learning with Completely Reliable Input

The simplest assumption which we may make about how a learner views this source of evidence as
to the denotation of a colour term, is that they may always consider the pairing of the colour term and
the colour to be completely accurate. Given this assumption, the probabil ity of any colour example
for the colour term under consideration is given by (2)4 for any hypothesis which includes that colour
in its range. The hypothesis simply states that an example of the colour term is equally likely to occur
anywhere within the range of the hypothesis. Hence the probabil ity of a given colour example
occurring at any particular point within the range of the hypothesis is equal to one divided by the
number of such points (e - s).

(2) 
)(

1

se
P

−
=

In most cases there will be more than a single example of each colour term, so the probability of all
the examples wil l be equal to the product of the probability of each, so long as each is within the
scope of the hypothesis. As the probabil ity of each individual colour example given the hypothesis is
given by (2), the probability of all the data given a hypothesis is given by (3)5, where n is the number
of examples of the colour term.

(3) 
nse

hdP
)(

1
)|(

−
=

However, the above equation only applies in the case that all the observed colour examples are
within the range of the hypothesis. As the assumption has been made that all the observed colours are
correct examples of the colour term, the probabil ity of any individual colour example being outside
of the range of the hypothesis is zero. Hence the probability of the data given a hypothesis in which
one or more colour term example is given an incorrect label is given by (4).

(4) 0)|( =hdP

4.2.2.2 Learning with Unreliable Input

It seems worth considering whether the above assumption, that a person will always assume that a
given colour term and colour example will always have been correctly paired, is correct. There are
good reasons to believe that a language learner would not be completely certain that they had always
correctly identified the colour being referred to by a particular colour term. The pairing of a colour
term and a colour relies on correctly identifying the colour term being used, and establishing what
colour the speaker intended to identify using this term. There are a number of factors which could
lead to a person incorrectly pairing a colour term and a colour, creating considerable scope for error
in deriving colour term and colour pairs.

Firstly, a speaker may use the wrong colour term to describe a colour which they wish to refer to.
Such an error could arise for a number of reasons. On some occasions this kind of error would arise

                                                       
4 Note that this equation assumes that colours are specified with an accuracy corresponding to the unit size of the scale of
hues used. However, if colours are specified to a different accuracy, this will not affect the specification of the model, as
below where a formula for the final semantic interpretation of a colour term is specified, the component P(d | h) is
divided by the integral of this term over all hypotheses, and so any constant term scaling for the precision with which
colours are recorded would cancel out.
5 This formula assumes that the number of colour examples is known a priori. As this value does not change between
hypotheses, this assumption wil l not have any effect on the model.
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simply through a speech error, or the speaker may have incorrectly perceived the colour. This
possibility would be especially likely under poor or unusual il lumination, as these conditions would
make the task of accurately perceiving the colour more difficult, though even small errors in
perceiving colour for colours near the margins of the denotations of colour terms could produce this
kind of error.

However, even if a speaker perceives a colour accurately, and does not make a performance error,
they may still label a colour term inaccurately. This would happen in one of two cases, either because
a speaker was unsure of the correct colour term with which to label the colour in question, or because
they had incorrectly learned the denotation of the colour term. If a speaker has observed only a
limited number of examples of a colour term, then they are unlikely to be certain about exactly which
colours this term can be correctly used to refer to, and this is especially likely to affect colours near
the margins of its denotation. It is also possible that a speaker has simply learned the denotation of a
colour term inaccurately. This could happen for a number of reasons, including the speaker having
learned from inaccurate input. Either of these two factors could lead to a learner incorrectly pairing
colour terms with colours.

The above discussion may seem to presuppose a single correct denotation for all colour terms.
However, this may seem problematic, as exactly what a ‘correct’ denotation could be, other than the
denotation believed to be correct by a speaker of the language, is unclear. It does seem reasonable,
however, to consider there to be a ‘correct’ denotation, based not on the semantic representation of
an individual speaker of a language, but on some kind of norm of the speech community as a whole.
I will not discuss exactly how such a speech community norm may arise from the knowledge of
individual speakers. Instead I will simply assume that in practice individual uses of colour terms to
name colours may be classified as correct or incorrect, irrespective of the language use of any
individual speaker.

Having considered the cases in which a speaker may come to use an incorrect colour term to describe
a particular example colour, it now remains to consider errors which may arise even in cases in
which a speaker has used a colour term correctly. Errors could arise through the learner believing
that the speaker had used a colour term to identify a colour, when in fact no word had been used to
denote a colour, when a hearer incorrectly inferred the colour which the colour term was used to
describe, or the hearer may simply have misperceived the colour.

Firstly, a hearer could come to believe a colour term had been used to describe a colour, when in fact
it had not been used to describe a colour at all . Colour words are usually polysemous, and may also
have homonyms. Consider, for example, the sentence Mary has green fingers. A language learner
might then infer that the term green may be used to describe the colour of Mary’s fingers, when in
fact the speaker meant to say that Mary is very good at gardening. Errors of this sort could also
happen if the learner misperceives a word which is not a colour term, in such a way that they believe
that it is. They are then likely to associate a colour with the word they believe to have been uttered,
when in fact that word had not been used by the speaker. Such errors are especially likely given that
acquisition of other areas of language is taking place simultaneously to the acquisition of the
semantics of colour terms.

Secondly, a hearer may misperceive a colour in exactly the same way as a speaker might, with the
same consequences for learning. However, possibly the most important factor leading to a learner
coming to pair a colour term with a colour example incorrectly, is that they may misidentify the
object, or the particular part of that object, the colour of which was being referred to. Determining
what colour a colour term was used to indicate on a particular occasion of use is a complex process,
in which a language learner must make inferences about exactly what object it is that has the colour
which is denoted by the term the speaker is using. Much has been written about this process (for
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example Bloom (2000) discusses it at length), but the computational model discussed here wil l not
focus on this aspect of word learning. For present purposes it is sufficient to note that this is a
complex process, and there are many opportunities for error. Here it will simply be assumed that
colour examples which do not come within the denotation of a particular colour term may
nonetheless on some occasions come to be paired with that term. Such erroneous pairing may arise
for any of the reasons mentioned above, and possibly also for other reasons not considered here.

Given all of the above considerations, it seems clear that a learner will not be completely certain that
in all cases the colour which they believe to have been named with a particular colour term, is
actually a colour that correctly falls within that term’s denotation. Hence formulas (3) and (4) above
do not correctly specify how P(d | h) should be calculated, as both these formulas assume that the
language learner believes the input data to the process of generalisation from examples to be
completely accurate.

It seems necessary to incorporate into these formulas a factor accounting for the possibil ity that some
of the example colours for the colour term under consideration are likely to be incorrect. For this
reason a constant p is introduced, which corresponds to a person’s belief that a colour has been
correctly associated with a colour term, as opposed to the colour arbitrarily being anywhere within
the phenomenological colour space. More specifically, p is the probabil ity with which the learner
assumes that each colour example has been correctly paired with its colour term label, and (1 – p) is
the probabil ity with which the learner assumes that the applied label is completely arbitrary, and
hence and may or may not correspond to a correct colour term for the colour in question. In the case
where p is equal to one, the model will correspond to the case outlined above for complete certainty
of correctness in colour and colour term pairing.

This treatment of a learner’s confidence in the correctness of the data is of course very simple. It
assumes that for all colour terms, and for all example colours, there will be an equal probability of
erroneously matching a colour and colour term. However, there are a number of factors which might
affect the confidence which a person had about correctly identifying the usage of a colour term.
Firstly the circumstances in which the colour terms were matched to particular colours might lead a
learner to be more certain that they had correctly paired a colour term with the colour it was used to
refer to on some occasions than on others. This would imply that different values of the constant p
might be appropriate for different colour examples.

People might also adjust their confidence that they are able to accurately pair colour terms to colours,
by considering how well the inferred examples of each colour term correspond to plausible
denotations. Such considerations would give a person some indication of how probable it is that they
had been successful in pairing each colour term to the colour it was used to denote. In the model this
would correspond to adjusting the value of the parameter p to an appropriate value taking account of
the observed data. The effect of these factors could be investigated in extensions of the model, but
for present purposes a person’s confidence in the correctness of the data is modelled simply by
assuming a fixed value for the parameter p.

Another assumption of the current model is that, if a colour is not a correct example of the colour
term, it is equally likely to occur anywhere in the phenomenological colour space. Even ignoring the
possibility that some colours are more frequently named than others (as discussed above), this
assumption may not be accurate. Whether this assumption is valid would seem to depend on how the
colour term had come to be paired with an incorrect example colour. For example, if the error arose
through the speaker or hearer having misperceived the colour, we would expect the colour to be near
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the boundaries of the denotation of the colour term. In contrast, if the hearer had misidentified the
object to which the colour term applied, or the speaker had been using a colour term to denote a
property other than colour, then the assumption would seem justified. Hence the extent to which the
assumption is justified is dependent on the relative importance of factors such as these.

However, during the course of the acquisition of colour terms, it would seem to be a very diff icult
task for children to assess how accurate the data from which they are learning is. Only when they had
identified the ranges of the denotations of each colour term with a high level of accuracy, would
children be able to make accurate estimates of how likely it is that their observations of colour
examples for each colour term were correct. Hence, it seems plausible that they make simple
assumptions such as those proposed here, about both the reliabil ity of their input examples, and the
properties of any erroneous data. Certainly there are alternative assumptions that could be made,
many of which might be equally plausible. Consideration of such alternatives would be a worthwhile
avenue for research, but at present it seems sufficient to consider only the one possibil ity.

Given this parameter for confidence in the data, it is now necessary to derive new formulas
specifying the probabil ity of the data given a particular hypothesis. First of all considering, only a
single colour example, if it is known that it has been correctly paired with the hypothesis, then,
assuming the hypothesis to be correct (and hence also that the colour example comes within its
denotation), its probabil ity is given by (5). It may be noted that this is the same as equation (2) above
for completely reliable data.
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If it is known that a colour example was not correctly paired with a colour term, and hence we
assume that it is equally likely to occur anywhere within the colour space, its probability is given
by (6).
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However, a learner will not in fact know whether a colour has been correctly paired with its
hypothesis, so we must incorporate into these formulas the probability with which a learner assumes
that the colour is, or is not, a correct example of the use of the colour term. Firstly we can consider
the case in which the colour example is outside of the range of the hypothesis. In this case the colour
example must have been incorrectly paired with the hypothesis, and so its probability is given by (6),
weighted by the probability that an arbitrary example colour has been identified to correspond to the
colour term. This probabil ity is (1 – p), so the resulting formula is that given in (7).
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If a colour example comes within the range of the hypothesis, then it may have been correctly paired
with the colour term, in which case its probabil ity would be derived from (5), or it may have been
incorrectly paired with the colour term, but nonetheless come within its denotation, in which case its
probability would be derived from (6). In fact, in order to determine the overall probabil ity of the
example given the hypothesis, we sum the probability of the example under both of these conditions,
weighted by the probabilities with which the learner assumes either of these two possibil ities. The
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probabilities are p and (1-p) respectively, so the overall probability of such an example is given
by (8).
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In order to determine the probabil ity of all the data given a particular hypothesis (P(d | h)), it is
necessary to multiply together the probability of each individual example. Where there are n
examples which fall within the range of the hypothesis, and m examples which fall outside of the
range of the hypothesis, this probability is given by (9).
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The above formula is the one which has been implemented so as to allow the probability of the
observed data given any of the permissible hypotheses to be determined. However, it is not how
probable data is given a hypothesis that we are interested in, but in fact it is the probability of
hypotheses given the data. In order to calculate this probabil ity using Bayes’ theorem we need to
consider the probabil ity of one further component, as described in the following section.

4.2.3 The A Priori Probability of the Data

The final term on the right hand side of Bayes theorem (as given in (1)), is P(d), corresponding to the
a priori probabil ity of the data. This term specifies how likely the data was before we considered any
particular hypothesis. While this term is constant across all possible hypotheses, we need to consider
it in order to determine the probability of each individual hypothesis given the observed data. The
value of the term can be calculated by summing the probability of the data given each individual
hypothesis, multiplied by the a priori probabil ity of that hypothesis. As the hypotheses are
continuous (that is, there are no discreet boundaries between hypotheses) we can use calculus to
calculate the value of this sum. This is expressed mathematically in (10), where H is the set of all
possible hypotheses.
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4.2.4 The Probability of a Hypothesis given Observed Data

We now have a specification of all the terms which we need to complete the right hand side of
Bayes’ theorem as given in (1). Substituting the expression given in (10) into this equation, we
obtain (11). (It should be noted that some of the occurrences of h have been relabelled hi, as
otherwise there would be two different variables both given the label h.)
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As all hypotheses are equally likely a priori, the terms P(hi) and P(h) are both constants and equal to
one another, and hence will cancel, allowing the equation to be rewritten as (12). This equation is
used in the next section to determine how likely it is that each possible colour is correctly labelled
with the colour term under consideration.
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4.2.5 Generalising to New Colours

The model uses Bayesian inference, not to determine the probabil ity of any individual hypotheses,
but to determine how likely it is that any colour which may be of interest is correctly labelled by a
particular colour term (that is how likely it is that the colour comes within the denotation of the
colour term). For a location in the colour space, x, we can express the probabil ity that it is within the
scope of a colour term C, given that we assume that hypothesis hi is correct, using the expression
P(x ∈ C | hi). When the location x is within the range of the hypothesis, then this expression will
have a value of one, as if a hypothesis is correct, then all hues with its range come within the
denotation of the colour term. However, when the location x is outside of the range of the hypothesis,
then the expression will have a value of zero, as if the hypothesis is correct, then all locations outside
of its range do not come within the denotation of the corresponding colour term.

However, what remains to be done is to derive a final expression for the probabil ity that a point in
the colour space is within the denotation of a colour term given, not a particular hypothesis, hi, but
given all the observed data, d. In order to do this, it is necessary to use the standard Bayesian
procedure of hypothesis averaging. The probabil ity that a location in the colour space is within the
denotation of the colour term is given by summing the probabil ity of this given each individual
hypothesis multiplied by the probabil ity of each hypothesis given the data. As was noted above,
hypotheses are continuous, so calculus is used to perform this summation, which is expressed
mathematically in (13), where H is again the set of all possible hypotheses.
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This formula completes the specification of the Bayesian model of acquisition, by specifying how a
person learning a language can learn to predict which colours come within the denotation of a
particular colour term, when their only information about this is a finite number of examples of the
use of a colour term.

4.2.6 More than One Colour Term

So far the model has been described with respect to only a single colour term. This is because each
colour term which a child tries to learn is considered independently of all the others. Every example
colour will be remembered in memory in exactly the same way, but each will be paired with a
corresponding colour term. In considering the denotation of each colour term, account will be taken
only of those colour examples paired with it. This means that, for every possible colour, a probabil ity
can be obtained that it is within the denotation of each colour term encountered by the model. Hence,
it is possible that the model wil l predict that a particular colour is very likely to come within the
denotation of more than one colour term, or that it is very unlikely to come within the denotation of
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any colour terms at all. However, the model will never conclude with absolute certainty that any
colour is outside of the range of the denotation of any particular colour term.

However, it is important to note that considering colour terms one at a time is an assumption, and
that alternative learning strategies are possible. The most obvious modification of the strategy
proposed here in this respect, is that a learner might reason that if a particular part of the colour space
comes within the denotation of one colour, then it is less likely to come within the denotation of
another colour. For example, if a learner were to believe that a colour came within the denotation of
a term toki, they might then consider it unlikely that that colour would come within the denotation of
any other term. A stronger version of this would state that a learner might assume that the
denotations of basic colour terms in a particular language do not overlap at all, and so if a colour is
within the denotation of one colour term, then it will not come within the denotation of another
colour term.

Beliefs of this kind, that the denotations of colour terms do not overlap might be supported by
inferences made from the linguistic context of a colour term. A learner might make inferences as to
whether colour terms overlap one another, based on pragmatic interpretation of observed dialogs. For
example, if a learner hears a conversation in which the first speaker says ‘ Is that balloon purple?’ and
a second person replies ‘No it’s blue.’ , they might take this as a cue that the denotations of red and
orange do not overlap, and so consider the denotation of each of these terms when inferring the
denotation of the other. However, even in this case it seems that this assumption may be incorrect, as
would be the case if in the above question the first speaker had asked ‘ Is that balloon turquoise?’, but
received the same reply. This is because the denotations of the colour terms turquoise and blue
overlap, with some colours being both turquoise and blue. So it can be seen that input of this sort is
not reliable in providing evidence that the denotations of colour terms do not overlap.

However, it is at least a very common property of languages that basic colour terms in a language not
only do not overlap, but also partition6 the colour space. (This issue is discussed in detail by Kay and
Maffi (1999).) The reason that turquoise and blue overlap, is because turquoise is not a basic colour
term, but a secondary colour term. The denotations of secondary colour terms can overlap with that
of more than one basic colour term, as is the case with turquoise, which overlaps the denotations of
both blue and green. Alternatively secondary colour terms may denote a range of colour within the
denotation of a basic colour term, as is the case with crimson, which denotes colours within the scope
of the denotation of red. What this implies is that, if a language learner were able to reliably identify
which colour terms in a language were basic colour terms, they might be able to learn more
effectively by making the assumption that the full set of these terms in the language partitioned the
colour space.

Clearly, relying on cues of this sort is a plausible learning strategy, but it does add the diff iculty of
determining which colour terms are basic, which would seem to be difficult, at least until the
acquisition of the colour term system was at a fairly advanced stage. Hence it seems unlikely that
adoption of such a strategy can be of major importance in enabling the successful acquisition of
colour terms. Further, such a learning strategy is then unable to account for how secondary colour
terms are acquired, as secondary colour terms certainly do not partition the colour space. Even
greater difficulties for such an approach are caused by a small minority of languages in which the
basic colour terms do not appear to partition the colour space, some colours having no corresponding
linguistic label (Kay and Maffi, 1999).

                                                       
6 By partition it is meant that the whole of the colour space is divided up so that each colour is denoted by exactly one
colour term.
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4.3 Deriving Fuzzy Sets using Bayesian Inference

As described up to the present point, the model simply determines the probabil ity that a specific
colour comes within the denotation of a particular colour term. However, so far no consideration has
been given to how a semantic representation of a colour term might be derived from the Bayesian
model. However, the Bayesian model implicitly defines a fuzzy set representation for the denotation
of colour terms.

Instead of considering the probabil ity that individual colours are denoted by a particular colour term,
we can consider, for each colour in the phenomenological colour space, the probabil ity that it is
within the denotation of the colour term. This will result in a probabil ity for each colour that it can be
denoted by the colour term of interest, and these values can be interpreted as specifying the degree of
membership of the colour in the semantic category labelled by the colour term. Hence these values
may be used to define fuzzy membership in sets corresponding to each colour term.

There are a number of interesting properties of these fuzzy sets, most obviously that for each set, and
hence for each colour term, some colours will be members with a greater certainty than other
colours. However, there will be a probabil ity associated with the membership of every colour in
every set, so that, while it will be considered that some colours are almost certainly not members of
the set, there will always be a small probabil ity associated with the possibility that they are members.
The implications of these properties of the colour term’s denotations is discussed in detail below, but
now I move on to consider how the model may be practicably implemented on a computer.

5 Implementation of the Model

While section 4 specifies the model in detail , it does not discuss how the model can be implemented
in practice. In particular, equations (12) and (13) both contain integrations, but it remains to be
shown that the relevant parts of these equations can in fact be integrated in practice, and how these
integrated equations may be use to determine how likely it is that each colour of interest comes
within the denotation of each colour term.

5.1 Calculating the Probability that a Colour is within the Denotation of a Colour

Term

If we substitute the right hand side of equation (12) for the term P(hi | d) in (13), we obtain the
equation (14).
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The value of the integral of P(d | h) with respect to dh is not dependent on the value of dhi, and so is
a constant term in the integration with respect to this variable. This allows equation (14) to be
rewritten as (15).



19

(15) 
∫

∫

∈

∈

∈

=∈

Hh

Hh

iii

dhhdP

dhhdPhCxP

dCxP i

)|(

)|()|(

)|(

As the term P(x ∈ C | hi) evaluates to one in the case where x comes within the denotation of the
hypothesis hi, and to zero in other cases, the top half of the fraction in (15), is effectively a sum over
P(d | h) for all ranges of the space of possible hypotheses in which x comes within the denotation of
the hypothesis. In contrast the term on the bottom of (15) is a sum over P(d | h) throughout the
hypothesis space, regardless of whether x comes within the denotation of those hypotheses or not.
Hence the equation may be written as in (16), where Px corresponds to the sum over P(d | h) for
hypotheses including x in their denotations, and Pnotx corresponds to the sum over this same term
for hypotheses not including x in their denotations. The program wil l hence implement (14) by
calculating Px and Pnotx, and substituting their values into (16).
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5.2 Derivation of the Integrals

Now that the task of determining the probabil ity that a colour comes within the denotation of a
colour term has been reduced to determining values of sums of P(d | h) over specific ranges of
hypotheses, and substituting these values into equation (16), it is necessary to consider how these
sums can be calculated in practice. Consider again equation (9), repeated here as (17). This formula
contains the symbols p, n, m, s, and e. What it is important to determine for the process of
integration, is whether these values are constant across different hypotheses, h, or for those terms
which are variables, in what way they wil l change.
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First of all it may be noted that p is a constant term throughout the model. n and m correspond to how
many of the example colours come within the range of the hypothesis under consideration, and how
many outside of it. Hence these values wil l vary between hypotheses, depending on which colour
examples each hypothesis includes in its range, and which it excludes. However, these values wil l
change discretely at fixed points in the hypothesis space, and so integrations over the space of
hypotheses cannot include hypotheses for which the corresponding values of n and m would vary.
Integrating over the whole of the hypothesis space would only be possible if an equation relating the
values of n and m to the hypotheses could be substituted for these values. Hence the value of the sum
over P(d | h) will have to be calculated in sections, with the values of the sum for different values of
n and m considered separately.

At this point it is also noting that we wish to derive separately the sum over P(d | h) for those
hypotheses which include the point of interest, x, and those which do not. This is also a property
which will change discretely at points in the hypothesis space, and so similarly it will be necessary to
consider sums over areas of the hypothesis space where x is included in the range of the hypothesis
separately to those where x is not included in the range of the hypothesis.

The final two terms to consider are s and e, which correspond to the location in the hypothesis space
of the start and the end of a hypothesis. These values define the particular hypothesis under



20

consideration, and so when we sum over areas of the hypothesis space, we are in fact summing over
equation (17) for ranges of the variables s and e. Recall from section 4.2.1 that the hypothesis space,
H, is composed of hypotheses which may start at any point in the colour space, and may end at any
point. Hence, when we sum over areas of the colour space, we must sum over equation (17) for a
range of values of s, and for each value of s, for a range of values of e. Recall also from section 4.2.1
that for the purposes of implementation the variable specifying the end of a hypothesis, e, will
always have a value greater than that specifying the start, s. So in some cases the value of e will be
greater than the size of the colour space (100), in cases where the hypotheses include the origin in
their range. In fact, in some cases we will consider continuous ranges of hypotheses where the range
of start values also crosses the origin, and in these cases the upper limit of s will also be greater than
100, to indicate a location in the colour space clockwise from the origin.

As summing over ranges of the hypothesis space requires summing over ranges of two separate
variables, this must be implemented using a double integration. (18) expresses how the probability of
the data given a range of hypothesis is determined by summing over a range of the hypothesis space.
However the expression h ∈ H seen in earlier equations, indicating that the sum takes place over the
full range of hypotheses, is replaced by two separate integrals specifying that the sum be taken over a
specific range of hypotheses, which here are represented collectively as Hi. This specific area of the
hypothesis space, Hi, contains the range of hypotheses which start anywhere between the points s1

and s2, and which end anywhere between the points e1 and e2. Throughout the rest of this paper, I
will use Hi to refer to any particular range of hypotheses currently under consideration.
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If we substitute for the expression P(d | h) in (18), using (17), we obtain equation (19), specifying
exactly the integration which must be performed in order to derive an equation allowing the sum
over the probabilities of a set of data to be calculated for a specific range of the hypothesis space. It
is now necessary to perform first the integration over e, and secondly the integration over s, so as to
allow this expression to be evaluated for specific values of the parameters.
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5.2.1 Integrating Over e

We can note first that we will only use integration to sum over areas of the hypothesis space in which
n and m do not change, and hence, for the purposes of integration (over both e and s), these terms,
along with p, are all constants. As the value of s is not dependent on the value of e, it too will be a
constant for the purposes of the integration over e. As a first step in performing the integration, we
may note that a constant term may be removed entirely from the scope of both the integrations, so as
to derive equation (20).
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Now it may be noted that the term to be integrated with respect to e is a binomial expression, so we
can use the binomial expansion, as given in (21) to replace this term. (Note that the expansion of r

nC
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is as specified by equation (22).) If we equate a with the first part of the binomial, as in (23), and b
with the second part as in (24), we can observe the equivalence of the term to be integrated and the
left hand side of equation (21).
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When we use expression (21) to substitute for the appropriate term in (20), the result is equation (25).
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By removing constant terms from the scope of the integrations, and removing the discrete summation
from the scope of the continuous ones, (25) can be transformed into (26).
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We may now note that the integration to be performed is straightforward, but that it will have a
special case when n-r is equal to one. This wil l be the when case r is equal to n-1, and so we will use
the discrete summation up to only, n-2, and then include separate terms for when r is equal to n-1 and
when r is equal to n. The resulting equation, after these terms have been separated out is given
in (27).
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Simplifying terms which now are now raised to the power of one, or the power of zero, results in
equation (28).
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We must note, however, that when the binomial expansion was separated into three separate parts, an
implicit assumption was made that n was equal to or greater than two, so that elements of the
summation could be separated for the cases when n was equal to one, and when n was equal to zero,
and that this would still l eave at least one greater value of n which would be covered with the
summation. However, in some cases n will be equal to one, or to zero, which wil l be so when the
range of hypotheses under consideration contains only a single colour example, or no colour
examples at all. Substituting the value of zero for n in equation (26) results in equation (29), which is
the equation to be integrated in the case that the hypotheses span no colour term examples.
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Substituting the value of one for n in equation (26), results in equation  (30), which is the equation to
be integrated in the case that the hypotheses span only a single colour term example.
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We may note that equation (29) contains an instantiation of the term corresponding to the first
integral in (28) and (30) contains a sum of instantiations of the first and second integrals in the same
equation. Hence, rather than proceeding with the integration of these equations separately to that of
the equation for when n is greater than or equal to one, they wil l be derived by substituting in the
appropriate value of n to the terms in the final integrated form of equation (28). Hence we now
proceed with the integration of this equation, first rewriting the final integral as in (31), so as to make
the integration more transparent.
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When the three integrations with respect to e are performed, the result is as given in (32).
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This completes the integration over the variable e. However, before the integration over s is
performed, it is necessary to consider what the values of the limits on the integration will be, as the
result of the second integration will depend on whether e1 and e2 are constants with respect to the
value of s.

5.2.2 Identifying the Limits on the Integration

The nature of the limits on the integrations will be considered with reference to an example of
generalising from a specific set of colour examples, to a previously unlabeled colour. Figure 5 below
shows a representation of the phenomenological colour space on which are shown the colours
associated with three instances of the use of the colour term yellow, along with the point, x, about
which the probabil ity of it being within the denotation of the term yellow will be calculated.

Figure 5. The Phenomenological Colour Space with Observed Colour Term Examples

The values of the terms n and m will differ depending on how many examples of the colour term
yellow are within the scope of the hypothesis. Hence, when we consider continuous ranges of the
hypothesis space, these values wil l change as either the position of the start or the end of the
hypothesis being considered passes one of these points. Similarly, as the position of the start or the
end of the hypothesis crosses the point x, the property of whether the hypothesis includes or excludes
the point about which we wish to calculate the probability of it coming within the denotation of
yellow changes. As the integral will not work over areas of the hypothesis space which have different
values for the parameters n and m, and we wish to find separately the probabil ity of the data summed
over all hypotheses including x, and all hypotheses excluding x, we cannot use the equation for
ranges of the colour space which cross the location of a colour example, or the point x. However, as
we wish to consider the probabil ity of the data given all the hypotheses, but, for reasons of eff iciency
and simplicity, making as few calculations as possible, with each calculation, we will always
consider as large a range of hypotheses as is possible within these constraints. In most cases this will

  yellow 1

yellow 2

yellow 3

  x
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involve setting the limits on the integration to points in the colour space either where there is an
instance of an example of the colour term, or at the location of the point x.

As an example, we can consider calculating the probability of the data given all of the hypotheses
which include the example colours labelled yellow 1 and yellow 2 in Figure 5 above, but which
exclude the point x, and the example labelled yellow 3. This is a case of calculating the value of

∫
∈ iHh

dhhdP )|( , where Hi corresponds to this range of hypotheses. These hypotheses are those the

starts of which are after x, but before yellow 1, and which have their ends after yellow 2, but before
yellow 3. Hence the values on the limits on the integrals will correspond to these four points. The
first position at which a hypothesis may start, s1, will be the location of x, and the last position at
which a hypothesis may start, s2, will be the location of yellow 1. The first position at which
hypotheses may end, e1, will be yellow 2, and the last position at which hypotheses may end, e2, will
be yellow 3. When these values are substituted into the final form of the equation, its evaluation will

determine the value of ∫
∈ iHh

dhhdP )|( .

In the above example, the limits on both s and e were all constants. This will be the case whenever
there is at least one colour example or the point x separating the range of positions in which the
hypothesis may start, from the range of positions in which it may end. The integration in such cases
is completed in section 5.2.3. However there are some instances in which this condition does not
hold, so the following paragraphs consider integration in these circumstances.

Let us now consider another example, that of calculating ∫
∈ iHh

dhhdP )|(  when the set of hypotheses

under consideration, Hi, corresponds to a case where there is neither a colour example, nor x
separating the range of the starts of hypotheses and the ends of hypotheses. This will be so whenever
we consider hypotheses that contain all the colour examples and the point x. If we consider this with
respect to Figure 5, there are four separate ranges of such hypotheses. Those which both start and end
between x and yellow 1, between yellow 1 and yellow 2, between yellow 2 and yellow 3 and between
yellow 3 and x. Considering as an example the case of hypotheses starting and ending between x and
yellow 1, it might at first seem that the value of s1 would be x and s2 yellow 1, and that e1 would be
x+100 and e2 yellow 1+100. (100 would be added to these latter values to indicate that the hypothesis
would go all the way around the colour space and past the origin.) However, it is clear that these
values are not correct when we consider the hypothesis which starts at the earliest possible point, x,
and finishes at the latest, yellow 1. This hypothesis would go all the way around the colour space
from x, but the last section, from x to yellow 1, would overlap itself. This is problematic, as the
hypothesis is larger than the whole of the colour space, and includes some of the colours twice,
which does not have a coherent meaning within the model.

What is wrong with the above values on the limits of the integration, is that they do not take account
of the fact that the end of the hypothesis may not appear more than one full circle around the
hypothesis space from the start. It is easy to incorporate this restriction into the limits on the
integration by setting the upper limit on the end of the hypotheses, e2, to s+100, rather than to yellow
1+100. Now the end of a hypothesis may reach all the way to yellow 1 only in the case that this is
also exactly where the hypothesis started. Incorporating these new limits on integration into
equation (32) results in equation (33).
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However, (33) only applies in the case that all the colour examples are within the range of the
hypotheses. Hence, in such cases there will be no colour examples outside of the range of the
hypotheses, and so m will be equal to zero. Substituting this value into the equation results in (34).
Integration with respect to s will now produce a different equation, as the upper limit on e is now no
longer constant with respect to this integration, but is a variable dependent on s. The completion of
the integrations in this case is presented in section 5.2.4.

(34) [ ] [ ]∫∫∫ +
+

−
+
+

∈

−




 −+





 −=

2

1

1

2

1

1

100
100

1
100
100 )ln(

100

)1(

100

)1(
)|(

s

s

s
s

ns

s

s
s

n

Hh

dsse
p

pndse
p

dhhdP
i

                           ∑ ∫
−

=

+

+

−−−



















−





 −

+−
+

2

0

100

100

12

1 1

1

100

)1(

1

n

r

s

s

s

s

rnrrn
r
n ds

se

p

nr

p
C

The only other situation in which there is neither a colour example nor the point x separating the
range of possible values for the starts of the hypotheses and for the ends, is when there are no colour
examples nor the point x within the range of the hypotheses. In Figure 5 above, there are four
situations which correspond to this case. These are when the whole of each hypothesis is between x
and yellow 1, between yellow 1 and yellow 2, between yellow 2 and yellow 3, or between yellow 3
and x. We can first consider as an example the hypotheses within the part of the colour space
between yellow 2 and yellow 3. It is not possible to simply set the lower limits on both s and e to
yellow 2, and the upper limits on both these same variables to yellow 3, as this would allow cases in
which the end of the hypothesis came before the start.

What is needed, is to constrain the range of permissible endpoints of hypotheses, such that these may
only occur in positions between the start of the hypothesis and yellow 3. This can be achieved by
making the lower limit on e equal to s. Making this change to equation (32) results in equation (35).
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We may note, however, that in such cases, as there are no colour examples within the range of the
hypotheses, n will be equal to zero. Hence, in this case only the first integration should be included.
Making this change, and setting n equal to zero, results in equation (36). The integration over s in
this case is presented in section 5.2.5.
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These three cases for different types of limits on the values of e cover all the possible limits on the
integrations, so it is now possible to proceed with the integration of equations (32), (34) and (35)
with respect to s.

5.2.3 Integrating over s when the limits of e are constants

This section completes the derivation of an equation for ∫
∈ iHh

dhhdP )|(  when the range of locations

for the end of the hypotheses is separated from the range of locations for the start by at least one
colour point or the point x, and hence the limits on the integrations are all constants. Firstly, the
limits on the value of e in equation (32) are substituted in to give equation (37).
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Rewriting the third integration results in (38).
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We should note that the integration of the third term will have a special case when r is equal to n-2,
and hence it is necessary to separate this case out of the discrete summation. Making this change
results in equation (39). Rewriting the equation in this way assumes that n is greater to or equal to
three, so it will be necessary to consider another special case of the equation for when n is equal to
two.
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Performing the integrations results in (40).

(40) [ ]




−





 −






 −=∫

∈

2

112100

)1(

100

)1(
)|( s

s

nm

Hh

sese
pp

dhhdP
i

                          [ ] 2

1
)ln()()ln()(

100

)1(
2211

1
s

s

n

sesesese
p

np −−−−−




 −+

−

                          [ ] 2

1
)ln()ln(

100

1

2

)1(
12

2
2 s

s

n

sese
p

p
nn −−−





 −−+

−

                           
























−

−





−






 −

+−+−
+ ∑

−

=

−−−−−3

0

2

2

2

1

2

1

)(

11

100

)1(

)2)(1(

n

r

s

s

rnrnrrn
r
n

sese

p

nrnr

p
C

When the integrals are expanded, by substituting the values of the limits on the integration for s, the
resulting equation is given in (41). This equation is correct when there are at least three colour
examples within the range of the hypotheses being considered, but we also need to derive equations
for when there are only two colour examples, when there is only a single colour example, or no
colour examples at all , within the range of the hypotheses being considered.
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Firstly an equation will be derived for the case where there are no example colours within the range
of the hypotheses, and hence n is equal to zero. As noted above, this equation will contain only a
term corresponding to the first integral. The second integral is applicable only when n is greater than
or equal to one, the third when n is greater than or equal to two, and the fourth when n is greater than
or equal to three. When only the first integral, and the constants it is multiplied by, are included in
the equation, and the value of zero substituted in for n, the result is equation (42). This equation
applies in all i nstances where the limits on integration are constants, and the range of hypotheses
contains no colour examples. As the range of start and end points for the hypotheses must be
separated by discontinuities, the discontinuity after the start but before the end must be the point x, as
there cannot be a colour example within this range.
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Next an equation will be derived for the case that there is only a single colour example within the
range of the hypotheses. As noted above this equation can be derived by including only the first two
integrals. Taking the corresponding integrals from equation (41), and substituting the value one for n,
results in equation (43). This equation applies in all cases where the limits on integration are
constants, and the hypotheses contain a single colour example.
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Finally it is necessary to derive one more equation, for the case when the hypotheses include exactly
two colour examples within their range. Here we take the first three integrals of equation (41), and
set n equal to two. This results in equation (44), which applies in all cases where the limits on
integration are constants, but the hypotheses contain two colour examples.
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Four final equations have now been derived, equations (41), (42), (43) and (44). These hypotheses
cover all the cases in which the range of start values and the range of hypotheses are separated by at
least one colour example or the point x, and will be used in the final implementation of the model.

5.2.4 Integrating over s when the upper limit on e is dependent on s

In this section, equations are derived for situations in which the hypotheses under consideration
include all of the colour examples and the point x. First, substitutions are made of the limits on e in
equation (34), which results in  (45).
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As was the case for the integrations when the limits on e were both constants, the integration of the
term in the discrete summation will have a special case when r is equal to n-2, and so this case must
be separated out of the summation so as to enable the integration to be performed. Making this
change results in equation (46).
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When the integrations over s are performed the result is equation (47).
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Finally, substituting in the limits on s produces equation (48). This is the equation which will be used

to calculate ∫
∈ iHh

dhhdP )|(  for ranges of the hypothesis space which include all of the colour

examples and x, where there are at least three colour examples. However, we also need to consider
the cases when there are only two colour examples, where there is only a single colour example, or
when there are no colour examples at all .

(48) 
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First the case where hypotheses contain no colour examples, and hence n is equal to zero will be
considered. The equation will contain only the first integral, and when the value of zero for n is
substituted in, the result is as given in (49).
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However, in the case that equation (49) applies, that is when there are no colour examples within the
range of the hypotheses, and hence n is equal to zero, no colour examples can have been observed at
all, because the hypotheses must include any colour examples which do exist. This means that there
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will only be a single discontinuity in the hypothesis space, at the point x. So, as we will always
consider the largest possible range of the hypothesis space that is possible with each use of an
equation, in this case we will consider the range of hypotheses which start anywhere in the range
from just after the point x, right round to the other side of this same point. Hence, the end of this
range will be 100 units after the start, expressible with the equation s2=s1+100. Substituting into (49)
using this equation results in equation (50).

(50) 5000)|( =∫
∈ iHh

dhhdP

Equation (50) tells us that the sum of the probabil ity of the data given a hypothesis, over the full
range of hypotheses containing any single point, x, is the same regardless of where in the colour
space that point is, and is equal to 5000. This equation may seem to be fairly meaningless, given that
it applies only in the case that there isn’ t any data, but it will be useful in calculating the probabil ity
that particular colours may be within the denotation of a colour term in the case that no colour
examples have yet been observed.

The second case to consider is when there is only a single colour example. In this case n will be
equal to one, and the corresponding equation will contain terms corresponding to only the first two
integrals in equation (48). When these changes are made to the equation the result is as given in (51).

(51) 
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Lastly it remains to derive an equation for when there are only two colour examples, and hence n is
equal to two. This equation will include terms corresponding to the first three integrals of equation
(48). Including just these integrals and setting n equal to two results in equation (52).

(52) 
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The four final equations derived in this section, (48), (50), (51) and (52) cover all cases in which the
range of the hypotheses include all the colour examples and x, and will be used in the final computer
implementation of the model.
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5.2.5 Integrating over s when the lower limit on e is dependent on s

This section derives an equation for ∫
∈ iHh

dhhdP )|(  for continuous ranges of the hypothesis space

which contain no colour examples nor the point x. Starting with equation (36) derived above,
substituting in the values for the limits on e results in equation (53).
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Integrating over s produces equation (54).
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And substituting in the limits on s results in equation (55). This equation will be used to calculate the

value of ∫
∈ iHh

dhhdP )|(  for all ranges of hypotheses which contain neither any colour examples nor

the point x.

(55) 
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5.3 Applying the Equations

The nine final equations derived in section 5.2 can now be used to calculate ∫
∈ iHh

dhhdP )|(  for all

regions of the hypothesis space. The total of the results of these calculations for all the ranges of the
hypothesis space containing x, and the total for all the ranges not containing x can be calculated.
These values can be substituted into equation (16) to determine the probability that the point x comes
within the denotation of the colour term (P(x ∈ C | d)). Calculating this probabil ity for all possible
values of x will give the degree of fuzzy membership of each hue within the denotation of the colour
term, thus defining a fuzzy set.

6 Learning the Denotation of English Colour Terms from Examples

In order to investigate how the model would perform in practice, and what properties the learned
denotations of the colour terms would have, the model was trained on the six chromatic basic colour
terms of English which are distinguished principally on the basis of their hues. Using data from
Berlin and Kay (1969), estimates were made of the width of the phenomenological colour space
corresponding to each colour (the width being measured along the hue dimension only), and these
estimates were used to map each colour term to a section of the phenomenological colour space in
the model, such that these six colours partitioned the colour space. Berlin and Kay show the extent of
these colours on an array of Munsell colour chips. As the Munsell system of colour chips attempts to
space the chips in phenomenologically even gradations of colour, the number of colour chips within
the range of each colour term should at least approximate the size of the phenomenological colour
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space denoted by that colour. However, whether or not Berlin and Kay’s data is an accurate measure
of the size of the denotation of each colour term is not important for present purposes, as the purpose
of the current experiments was simply to show how any such colour system can be learned from
examples.

Example colours for each colour term were generated within the range of the phenomenological
colour space corresponding to each colour. In order to simulate possible inaccuracies in the naming
or perception of these colours, each was then randomly adjusted within the range of plus or minus
five units. The model was initially trained on five examples of each colour term. The resulting fuzzy
denotation of each colour term is represented graphically in Figure 6. The horizontal axis covers the
range of hues in the phenomenological colour space, from red to orange, yellow, green, blue and
finally back to red. (As the colour space is circular, the left and right edges of the graph represent
adjacent points in the colour space.) The vertical axis represents the probability with which it is
believed that each hue comes within the denotation of each colour term, ranging from zero,
indicating that a hue is definitely not within the range of a colour term, to one, indicating that it
definitely is. These values may alternately be interpreted simply as the degree of membership of each
hue within the categories corresponding to each colour term.
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Figure 6. The Fuzzy Denotation of English Basic Colour Terms after 5 Examples

In Figure 6 we can observe some important properties of the learned denotations. Firstly we can
observe that each colour category has a prototype structure. Consider for example the curve
corresponding to the colour term yellow. This curve rises to a single peak near the middle of the
graph, with the probability of a hue being a member of this category decreasing the further the hue is
away from this point. There is a section of the colour space about which the model is almost certain
that it comes within the denotation of yellow (where the yellow curve is very high), and there is a
section of the colour space which the model thinks is unlikely to come within the denotation of
yellow (where the curve drops low down, getting below 0.2). In between these two areas are colours
which may be considered marginal examples of the colour term, especially where the curve is near
the 0.5 level, where the model considers it equally likely that a hue may or may not be within the
denotation of the colour term.
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Hence we can see that the denotations have the key properties of prototype categories. Firstly some
members of the category are better examples of it than others are. Secondly there is a single best
example of each category. Finally there are marginal members of each category, about which it is
difficult to be certain whether or not they are members of the category.

If we look at areas close to the boundaries of two colour terms, for example the boundary between
blue and purple towards the right of Figure 6, we can see that their are colours which are considered
more likely than not to be a member of more than one colour term. This has occurred because the
model has tended to overextend the colour categories, and this effect has been most severe for the
smallest categories. This is because a priori the model considers the denotation of all colour terms to
be equally likely to be of any possible size, but the average size for all possible hypotheses is equal
to half the colour space. In contrast there are no hues which are consider more likely than not to be a
member of no colour term at all. This has occurred because, given only five examples of each colour
term, the model has been influenced to a very large extent by its a priori assumptions.

Fifteen more examples of each colour term were added to the model, and the resulting denotations
are shown in Figure 7. The main difference between this graph and Figure 6 is that the model is now
much more certain about which hues come within the denotation of each colour term, and which do
not. There are areas where the curves come very close to the top of the graph, and where they are
very flat, because in these areas the model is almost completely certain that the hues come within the
denotation of the corresponding colour term. (While on the graph it may look as though these curves
are completely flat and that they have reached all the way to the top of the graph, this is simply a
consequence of the accuracy with which the graphs have been drawn. Each curve still rises to a
single point, and the degree of membership decreases very slowly on each side of this point.)
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Figure 7. The Fuzzy Denotations of English Colour Terms after 20 Examples

The model is now also almost completely certain that some hues cannot be labeled with each colour
term. This can be seen in the areas of the graph as areas where the curves are very close to zero. As
the model now has more data available from which to learn, it is able to determine the correct
denotation of the colour terms with a greater degree of accuracy, and so the range of hues about
which there is uncertainty about whether they come within the denotation of a colour term is much
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smaller. However each category still retains the overall prototype structure, with varying degrees of
membership, a single best example, and some marginal examples of the category.

7 Conclusions and Future Directions

The bayesian model described in this paper provides an account of the semantics of basic colour
terms. This account is flexible, so that it can account for the wide variation seen in the colour
systems of different languages. Not only does it provide an account of the nature of the semantics of
colour terms, it also demonstrates how those semantics can be learned by speakers of a language.
While the model has so far been used only to account for the acquisition of basic colour terms, there
seems no reason why it should not be equally good as a model of the acquisition of secondary colour
terms.

Of course, there are aspects of basic colour terms for which the model does not provide an
explanation. Probably most importantly the model does not give any preference to learning colour
terms with a prototype in one part of the colour space as opposed to any other. This conflicts with
experimental evidence from sources such as Rosch (1973) who found that colour terms focussed in
certain areas of the colour space were easier to learn than those focussed in other areas. For example,
almost all languages have a colour term with a prototype near the prototype of red in English. Rosch
found that colour terms where this colour was near the centre of the category were easier to learn
than colour terms where this colour was near the periphery. Berlin and Kay (1969), and many studies
since, have found very marked typological patterns in colour terms across languages. This suggests
that there must be some form of universal biases which direct people to have a preference for some
colour categories as opposed to others.

Hence it seems that, while the model presented here has the advantage over some other approaches
of being flexible enough to account for the full variety of basic colour term systems seen in the
world’s languages, it is in fact too flexible, as it fails to account for typological patterns, and
observed preferences in learning some colours as opposed to others. Work is on progress in
investigating how such biases can be introduced into the model, so that it is able to give a fuller
account of the phenomenon of basic colour terms across languages.

One hypothesis about why typological patterns are observed in basic colour terms systems is that
they are produced as colour term systems evolve over time, and those systems gradually add new
colours (Kay and Maff i, 1999). An extension of the current model which wil l investigate such
hypotheses, is to simulate populations of speakers over time as colour terms are acquired over a
series of generations.  Such computational evolutionary models, based on work such as Kirby (2000),
will form a later stage of the current research project.

Overall, the model is a proposal as to the general nature of the process of acquiring the meanings of
basic colour terms. It also suggests that prototype effects more generally may be due to similar
processes of Bayesian inference. However, further investigations wil l be needed to investigate how
well such an approach can account for the full range of psychological and typological data
concerning basic colour terms and prototype categories.
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