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1 Introduction

e Puzzle: Gap between symbolic and subsymbolic (neuron-like)
modes of processing 

e Aim: Overcoming the gap by viewing symbolism as a high-level
description of  the properties of   neural networks

e Method: standard methods of model-theoretic and algebraic
semantics. Neural (Re)interpretation of information states as
activation states of a neuronal network.

e Main thesis: Certain activities of connectionist networks can be
interpreted  as  nonmonotonic inferences. In particular, there  is
a strict correspondence between certain network types and
particular nonmonotonic inferential systems

e Optimality Theory as a general framework that integrates
insights from symbolism and connectionism
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Intended results

e Better understanding of connectionist networks:
Nonmonotonic logic  and algebraic semantics  as  descriptive and
analytic tools  for  analyzing their emerging properties

e New methods for performing nonmonotonic inferences:
Connectionist methods (randomised optimisation: simulated
annealing) can be adopted for realizing symbolic inferences

e Certain logical systems are singled out by giving them a "deeper
justification".

e Understanding Optimality Theory: Which assumptions have a
deeper foundation and which ones are pure stipulations?

Overview

1 Introduction
2 Connectionism and symbolism
3 The idea of underspecification
4 A concise introduction to neural networks
5 Information states as neural activation patterns
6 Asymptotic updates and nonmonotonic inference
7 Relating connectionism and symbolism 
8 Some remarks on Optimality Theory
9 Conclusions
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2 Connectionism and symbolism

1. Eliminativist position 
Most concepts from symbolic theory are misguided or superfluous. This
concerns, first at all, symbolically structured representations and rules.
Such concepts may be eliminated by connectionism. 
This position represents the mainstream connectionist approach.

2. Implementationalist position 
The basic units of cognition are (discrete) symbols handled by rule-based
processes. Internal knowledge is represented by rules, principles,
algorithms, and other symbol-like means. The computation performed by
the system can be implemented by connectionist aids. 
This position is taken by Fodor & Pylyshyn. It aims to eliminate
connectionism as a substantive cognitive paradigm. 

3. Integrative connectionism
Unification of the symbolic and the connectionist paradigm. Symbolism
as a high level description of the properties of neural nets.

4. Hybrid Systems
Link a current connectionist system with a current (physical) symbol
system (exploiting the strengths of each)

"Hybrid models, rather than being viewed simply as a short-term engineering
solution, may be crucial to our gaining an understanding of the parameters
and functions of biologically plausible cognitive models. From this
understanding we might hope to see the development of a new, and potentially
more correct, paradigm for the study of 'real', as opposed to artificial,
intelligence." (James A. Hendler 1989)
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3 The idea of Underspecification

(1) The tones sounded impure because the hem was torn. 
Linguistic meaning †Utterance meaning

(2) In most democratic countries, most politicians can fool most of
the people  on almost every issue most of the time.

(3) a. a fast car [one that moves quickly]
b. a fast typist [a person that performs the act of

typing quickly]
c. a fast book [one that can be read in a short time]
d. a fast driver [one who drives quickly]

(4) a. a red apple [red  peel]
b. a sweet apple [sweet pulp]
c. a  reddish grapefruit         [reddish pulp]
d. a white room/ a white house  [inside/outside]

What color is an apple?
Q1 What color is its peel?
Q2 What color is its pulp?
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4 A concise introduction to neural networks 

General description

A neural network N can be defined as a quadruple <S,F,W,G>:

S Space of all possible states
W Set of possible configurations. w0W describes for each pair i,j

of "neurons" the connection wij between i and j
F Set of activation functions. For a given configuration w0W a

function fw0F describes how the neuron activities spread
through that network  (fast dynamics)

G Set of learning functions (slow dynamics)

Hopfield networks

Let the interval [-1,+1] be the
working range of each neuron 

+1: maximal firing rate
  0: resting
–1 : minimal firing rate)

S = [-1, 1] n

wij = wji , wii = 0

ASYNCHRONOUS UPDATING:
s i(t+1)  = 2 (Gj wij@sj(t),  if  i = random(1,n)
s i(t+1)  = si(t),  otherwise

(2  nonlinear function: threshold)
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5 Information states as neural activation patterns

Activation states can be partially ordered in accordance with their
informational content

+1: maximal firing rate indicating maximal
- 1: minimal firing rate A specification
  0: resting indicating underspecification

Poset of activation states:
 

S = {-1,0,+1}n  

s$t  iff  si$ti$0 or si#ti#0, 
for all 1#i#n. 

This poset doesn't form a
lattice

Extended poset of activation states

S = {-1,0,+1,nil}n  
nil = "impossible activation"
s$t iff si = nil or si$ti$0 or si#ti#0,
for  all 1#i#n.

DeMorgan lattice

CONJUNCTION  : simultaneous realization of two states
DISJUNCTION   r: some kind of generalization. 

This fact enables us to interpret activation states as propositional objects (information states).
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6  Asymptotic  updates and nonmonotonic inference

Let us consider Hopfield networks as dynamical systems
(development of activation in time)

Definition  1
A state s0S is called a resonance of a dynamic system [S, f] iff

1. f(s) = s (equilibrium)

2. For each g>0  there exists a 0<*#g such that for all n$ 1
|fn (sN)-s| < g  whenever |sN-s| < * (stability)

3. For each g>0 there exists a 0<*#g such that 
limn64 (sN) = s whenever |sN-s| < * (asymptotic stabil.)

The existence of resonances is
an emergent collective effect.
Intuitively,  resonances are the
stable states of the network.
They attract other states. When
each  state develops into a
resonance, then the system
produces a content-addressable
memory. Such memories have
emergent collective properties
(capacity, error correction,
familiarity recognition.) 

A neural network [S,W,F] is called a resonance system iff 
limn64 (fn (s)) exists and is a resonance for each s0S and f0W. 
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Fact 1 (Cohen & Großberg 1983):
Hopfield networks are resonance systems. (The same holds for a
large class of other systems including the McCulloch-Pitts model
(1943), and Smolensky's Harmony networks (1986))

Fact 2 (Hopfield 1982)
The function E(s) = -Gi>j wij si sj is a Ljapunov-function of the
system in the case of asynchronous updates. I.e., when the
activation state of the network changes, E can either decrease or
remain the same. The output states limn64 (fn (s)) can be char-
acterized as the local minima of the Ljapunov-function.

Fact 3 (Hopfield 1982)
The output states limn64 (fn (s))
can be characterized as the
global minima of the Ljapunov-
function if certain stochastic
update functions f are consi-
dered  ("simulated annealing").

Definition 2 (asymptotic updates)
ASUPw(s) =def  {t: t = limn64 fn(s)}  [f asynchronous updates with
clamping]

Definition 3 (E-minimal specifications of s)
minE(s) =def  {t: t$s and there is no tN$s such that E(tN)<E(t)}

Consequence of fact 3
ASUPw(s) =def  minE(s),  where E(s) = !Gi>j wij si sj 
 (energy function)
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0 0.2 0.1
w = 0.2  0 -1

  ‰ 0.1  -1  0 

Example

     

 E
<1 0 0>   # <1 0 0>  0

 <1 0 1> -0.1
<1 1 0> -0.2
<1 1 1>  0.7
<1 1-1> -1.1   7

ASUPw(<1 0 0>) =  minE(s)  =  <1 1-1>

Definition 4   (Nonmonotonic inference relation)
s  “- w t  iff  s' $ t  for each  s' 0 ASUPw(s) 

In our example <1 0 0>  “- w   <1 1-1>
<1 0 0>  “- w   <0 1 0>

Fact 4 
(i) if s $ t, then s “- E t  SUPRACLASSICALITY

(ii) s “- E s REFLEXIVITY

(iii) if s “- E t and s B t “- E u, then s “- E u CUT

(iv) if s “- E t and s “- E u, then s B t “- E u CAUTIOUS MONOTON.
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Local 
Representation

7 Relating  connectionism and symbolism

Consider  the knowledge base in 

Connectionist Systems  Symbol Systems 
• connection matrix • strong and weak (default-)
• energy function   rules

 
At least for Hopfield systems there is a strict relationship between
connectionist and symbolic knowledge bases. 

1.  Assigning activation states to each atomic symbol of an elementary
language LAt , e.g. 

¼p1¿ = <1 0 ... 0>
¼p2¿ = <0 1 ... 0>          

 ... 
¼pn¿ = <0 0 ... 1>

2. Assigning combinations:
¼"v$¿ =  ¼"¿B¼$¿,  ¼-"¿ =  -¼"¿

3. Translating Hopfield networks into weight-annotated Poole
systems: Translate the connections wij into weight-annotated
defauls  pi : sign(wij) pj with weight |wij|, for 1#i<j#n 

Fact 5
Assume that the formulae " and $ are conjunctions of literals.
Assume further that the Poole system T is associated to the connection
matrix w. Then:  ¼"¿ “- w  ¼$¿    iff   " Å)T $ 



-11-

Example

At = {p1,p2,p3}

)  = {p1 :0.2 p2, 
 p1 :0.1 p3, 
 p2 :1.0 -p3}

• A scenario of " in T is a subset  )N  of  ) such that  )Nc{"}  is
consistent.

• The weight of a scenario )N is G()N) = G*0)N g(*) - G*0()-)N) g(*)
• Nonmonotonic inference as entailments in maximal scenarios

some (relevant) scenarios of p1:   G
{} -1.3
{p1 : p2} -0.9
{p1 : p2, p1 : p3} -0.7
{p1 : p2, p2 : ¬p3}  1.1  7
{p1 : p3, p2 : ¬p3}  0.9

Consequently:  p1 Å) T p2, p1 Å) T ¬p3

corresponding to: <1 0 0>  “- w   <1 1-1> $ <0 1 0> B<0 0 -1>

( Symbolic systems can be used to understand connectionist
systems.

( Connectionist systems can be used to perform inferences.
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Keane's marked-
ness conventions

Exponential weights and strict constraint ranking

 !back +back
 /i/  /u/  +high
 /e/  /o/  !high/!low
 /æ/  /]/

 /a/
 +low

The phonological features may be represented as by the atomic
symbols BACK, LOW, HIGH, ROUND. The generic knowledge
of the phonological agent concerning this fragment may be
represented as a Hopfield network using exponential weights with
basis 0 < g # 0.5. 
Strong Constraints:  LOW 6 ¬HIGH; ROUND 6 BACK

Assigned Poole-system
VOC :g1 BACK; BACK :g2 LOW 
LOW :g4 ¬ROUND; BACK :g3 ¬HIGH 

Smolensky’s speculation
Exponential weights correspond to an automatic processing mode
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8 Some remarks on Optimality Theory

• As with weight-annotated Poole systems, OT looks for an
optimal satisfaction of a system of conflicting constraints. 

• The exponential weights of the constraints realize a strict
ranking of the constraints

• Violations of many lower ranked constraints count less than one
violation of a higher ranked constraint.

Find the optimal vowels  (satisfying the strong constraints)
 Find the optimal high vowels        ( ” )

 +  + !  +  *

L  +  + ! !

 ! !  + !  *  *

L  +  !  +  +  *  *

 + !  + !  *  *  *

 + ! !  +  *

 + ! ! !  *  *

 !  + ! !  *  *  *

! ! ! !  *  *  *

B
ack

Low

H
igh

R
o
u
n

R
ound

Voc
;

Back

Back
;

Low

Back
;

¬High

Low
;

¬Round

The candidates can be seen as information (activation) states. The
Harmony (or NegEnergy; H = -E) can be recognized immediately
from the violations of the (strictly ranked) constraints.
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Principles of OT and their relation to connectionism

Optimality: The correct output representation is the one that
maximizes Harmony.  (H = - E, Ljapunov-function)

Containment: Competition for optimality is between outputs that
include the given input.  (Clamping the input units restricts the
optimization in a network to those patterns including the input.)

Parallelism: Harmony measures the degree of simultaneous
satisfaction of constraints.

Conflict. Constraints conflict: it is typically impossible to
simultaneously satisfy them all. (Positive and negative connecti-ons
typically put conflicting pressures on a unit=s activity.)

Domination: Constraint conflict is resolved via a notion of
differential strength: stronger constraints prevail over weaker ones
in cases of conflict.

Minimal violability: Correct outputs typically violate some
constraints, but do so only to the minimal degree needed to satisfy
stronger constraints.  

Strictness of domination: Each constraint is stronger than all
weaker constraints combined. (Corresponds to a strong restriction
on the numerical constraint strengths, and makes it possible to
determine optimality without numerical computation.)

Universality: The constraints are the same in all human grammars.
(Corresponds to a strong restriction on the content of the
constraints, unclear how to explain)
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9 Conclusions

e Certain activities of connectionist networks can be interpreted
as  nonmonotonic inferences. In particular, there  is a strict
correspondence between certain network types and particular
nonmonotonic inferential systems.

e The relation between nonmonotonic inferences and neural
computation must be of the type that holds between higher level
and lower level systems of analysis in the physical sciences. 
(For example, statistical mechanics explains significant parts of thermodynamics from
the hypothesis that matter is composed of molecules, but the concepts of thermodynamic
theory, like temperature” and “entropy,” involve no reference whatever to molecules.)

 

e So far we have considered only local representations where
symbols correspond to single nodes in the network. As a
consequence, we are confronted with a very pure symbol
system only that fails to express 

S Constituent structure
S Variable binding
S Quantification

e There are several possibilities to overcome these shortcomings:
S Using distributed representations for realizing constituent

structures (e.g. Smolensky’s tensor product representations)
S Realizing dynamic binding by using temporal synchrony.

Representation of rules with variables; variable binding
(Shastri & Ajjanagadde 1993; based on ideas of Feldman
1982 and von der Malsburg 1986)


