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Mathematical Approaches in Psychology
Generalized Quantum Theory

Some Remarks

• psychology is different from neuroscience

• mathematics is more than data processing

• mathematical precision is more than quantitative

Mathematics serves the precise formulation of conceptual
questions in terms of abstract structures (algebras, graphs, etc.).

Data processing includes the numerical quantification of
observables, statistical analysis of measurement results, etc.
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Mathematical Approaches in Psychology
Generalized Quantum Theory

Observational processes are interactions of an observing system O
with an observed system S (state ψ, observables A, B, ...):

(i) weak interaction: no significant effect of O on S,
(ii) strong interaction: effect of O on S makes a difference.

Physics:
(i) classical case, ABψ = BAψ commutative
(ii) quantum case, ABψ 6= BAψ non-commutative

Psychology:
Almost every action of O entails a significant effect on S.
Non-commutativity is the rule rather than the exception.

→ generalized quantum theory details
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Necker Cube
Quantum Zeno Effect
Necker-Zeno Model

Bistable perception of ambiguous stimuli: the Necker cube

spontaneous switches between two possible 3–D representations
at a time scale of some seconds
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Misra and Sudarshan (1977): Quantum Zeno Effect

• Two kinds of processes in an unstable two-state system:

“observation”: σ3 =

(
1 0
0 −1

)
switching dynamics: σ1 =

(
0 1
1 0

)

σ1 σ3 6= σ3 σ1

• The switching dynamics is a continuous rotation according to

U(t) = e iHt =

(
cos gt i sin gt
i sin gt cos gt

)
,

with H = gσ1, and to = 1/g characterizes the decay time of the system.

• “Observation” process is a projection P+ or P− onto one of the two

eigenstates of σ3.

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model
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• System dynamics without observations: Probability that the system is in
state |+〉 at time t if it was in |+〉 at t = 0:

w1(t) = cos2(gt)

• Successive observations at intervals ∆T : Probability that the system is in
state |+〉 at time t = N ·∆T if it was in |+〉 at t = 0:

wN(t) = (cos2(g∆T ))N

≈ exp(−g 2∆T 2 · N) = exp(−∆T

t2
o

t)

• Effect of observations: stabilization of the system in its unstable states,

“dwell time” increases from unperturbed to to an average time 〈T 〉:

〈T 〉 ≈ t2
o /∆T

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model
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From Quantum Zeno to Necker-Zeno

• States |+〉 and |−〉 correspond to the cognitive states

in the two possible representations of the Necker cube.

• Two complementary processes:

(i) unperturbed switching dynamics with characteristic time t0,

(ii) projection into a representation due to successive “updates” (∆T ).

• Associated cognitive time scales:

intrinsic update interval ∆T ≈ 30 msec

(sequentialization of successive stimuli, wagon wheel illusion)

to ≈ 300 msec (time for a stimulus to become conscious, P300)

〈T 〉 ≈ 3 sec (average “dwell time” for bistable states / representations)

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model



Introduction
Necker-Zeno Model for Bistable Perception

Empirical Confirmation
Temporal Nonlocality

Selected References

Necker Cube
Quantum Zeno Effect
Necker-Zeno Model

From Quantum Zeno to Necker-Zeno

• States |+〉 and |−〉 correspond to the cognitive states

in the two possible representations of the Necker cube.

• Two complementary processes:

(i) unperturbed switching dynamics with characteristic time t0,

(ii) projection into a representation due to successive “updates” (∆T ).

• Associated cognitive time scales:

intrinsic update interval ∆T ≈ 30 msec

(sequentialization of successive stimuli, wagon wheel illusion)

to ≈ 300 msec (time for a stimulus to become conscious, P300)

〈T 〉 ≈ 3 sec (average “dwell time” for bistable states / representations)

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model



Introduction
Necker-Zeno Model for Bistable Perception

Empirical Confirmation
Temporal Nonlocality

Selected References

Necker Cube
Quantum Zeno Effect
Necker-Zeno Model

From Quantum Zeno to Necker-Zeno

• States |+〉 and |−〉 correspond to the cognitive states

in the two possible representations of the Necker cube.

• Two complementary processes:

(i) unperturbed switching dynamics with characteristic time t0,

(ii) projection into a representation due to successive “updates” (∆T ).

• Associated cognitive time scales:

intrinsic update interval ∆T ≈ 30 msec

(sequentialization of successive stimuli, wagon wheel illusion)

to ≈ 300 msec (time for a stimulus to become conscious, P300)

〈T 〉 ≈ 3 sec (average “dwell time” for bistable states / representations)

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model



Introduction
Necker-Zeno Model for Bistable Perception

Empirical Confirmation
Temporal Nonlocality

Selected References

Dwell Time Distribution
Discontinuous Presentation

Observed Γ-distribution of dwell times T : P(T ) ∝ T b exp(−γT )

Model so far has b = 0 (purely exponential decay of P(T )),
refine with initial behavior due to effects of attention:

(a) increasing ∆T , (b) decreasing to .

– solid lines: Γ-distribution with
b = 2 and t0 = 300 msec
for ∆T = 70 msec (highest
maximum) and ∆T = 30 msec

– P(T ) according to Necker-Zeno
model with decreasing to
for ∆T = 70 msec (crosses) and
∆T = 30 msec (squares)
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Dwell Time Distribution
Discontinuous Presentation

Dwell times 〈T 〉 for off-times toff > 300 msec
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experimental values: crosses
from Kornmeier and Bach
(2004), squares from Orbach
et al. (1966)

plotted curve according to
the Necker-Zeno model for
∆T ≈ 70 msec
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Dwell Time Distribution
Discontinuous Presentation

Reversal rates 1/〈T 〉 for off-times toff < 300 msec
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experimental values with
error bars: from Kornmeier
et al. (2007)

asterisks: best fit according
to the Necker-Zeno model,
yielding ∆T ≈ 16 msec and
t0 ≈ 210 msec

squares: values for ∆T = 30
msec and t0 = 300 msec
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Background
Temporal Bell Inequalitites

• Question: Can mental events always be uniquely assigned to instances
without temporal extension?

• Bergson, James, Whitehead, etc., specious present, actual occasion, etc.:
temporally extended events within which no further temporal localization
(or segmentation) is possible. → temporal nonlocality

• In quantum mechanics, nonlocality is implied by non-commutative
operations and can be tested experimentally. Bell’s inequalities assume
locality so that their violation demonstrates nonlocality.

• Violations of temporal Bell inequalities would indicate temporal
nonlocality (but in quantum mechanics time and dynamics are
commutative).

• In the Necker-Zeno model there are two kinds of non-commuting
dynamics, so there is a chance to violate temporal Bell inequalities in
bistable perception.

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model



Introduction
Necker-Zeno Model for Bistable Perception

Empirical Confirmation
Temporal Nonlocality

Selected References

Background
Temporal Bell Inequalitites

• Question: Can mental events always be uniquely assigned to instances
without temporal extension?

• Bergson, James, Whitehead, etc., specious present, actual occasion, etc.:
temporally extended events within which no further temporal localization
(or segmentation) is possible. → temporal nonlocality

• In quantum mechanics, nonlocality is implied by non-commutative
operations and can be tested experimentally. Bell’s inequalities assume
locality so that their violation demonstrates nonlocality.

• Violations of temporal Bell inequalities would indicate temporal
nonlocality (but in quantum mechanics time and dynamics are
commutative).

• In the Necker-Zeno model there are two kinds of non-commuting
dynamics, so there is a chance to violate temporal Bell inequalities in
bistable perception.

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model



Introduction
Necker-Zeno Model for Bistable Perception

Empirical Confirmation
Temporal Nonlocality

Selected References

Background
Temporal Bell Inequalitites

• Question: Can mental events always be uniquely assigned to instances
without temporal extension?

• Bergson, James, Whitehead, etc., specious present, actual occasion, etc.:
temporally extended events within which no further temporal localization
(or segmentation) is possible. → temporal nonlocality

• In quantum mechanics, nonlocality is implied by non-commutative
operations and can be tested experimentally. Bell’s inequalities assume
locality so that their violation demonstrates nonlocality.

• Violations of temporal Bell inequalities would indicate temporal
nonlocality (but in quantum mechanics time and dynamics are
commutative).

• In the Necker-Zeno model there are two kinds of non-commuting
dynamics, so there is a chance to violate temporal Bell inequalities in
bistable perception.

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model



Introduction
Necker-Zeno Model for Bistable Perception

Empirical Confirmation
Temporal Nonlocality

Selected References

Background
Temporal Bell Inequalitites

• Question: Can mental events always be uniquely assigned to instances
without temporal extension?

• Bergson, James, Whitehead, etc., specious present, actual occasion, etc.:
temporally extended events within which no further temporal localization
(or segmentation) is possible. → temporal nonlocality

• In quantum mechanics, nonlocality is implied by non-commutative
operations and can be tested experimentally. Bell’s inequalities assume
locality so that their violation demonstrates nonlocality.

• Violations of temporal Bell inequalities would indicate temporal
nonlocality (but in quantum mechanics time and dynamics are
commutative).

• In the Necker-Zeno model there are two kinds of non-commuting
dynamics, so there is a chance to violate temporal Bell inequalities in
bistable perception.

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model



Introduction
Necker-Zeno Model for Bistable Perception

Empirical Confirmation
Temporal Nonlocality

Selected References

Background
Temporal Bell Inequalitites

• Question: Can mental events always be uniquely assigned to instances
without temporal extension?

• Bergson, James, Whitehead, etc., specious present, actual occasion, etc.:
temporally extended events within which no further temporal localization
(or segmentation) is possible. → temporal nonlocality

• In quantum mechanics, nonlocality is implied by non-commutative
operations and can be tested experimentally. Bell’s inequalities assume
locality so that their violation demonstrates nonlocality.

• Violations of temporal Bell inequalities would indicate temporal
nonlocality (but in quantum mechanics time and dynamics are
commutative).

• In the Necker-Zeno model there are two kinds of non-commuting
dynamics, so there is a chance to violate temporal Bell inequalities in
bistable perception.

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model



Introduction
Necker-Zeno Model for Bistable Perception

Empirical Confirmation
Temporal Nonlocality

Selected References

Background
Temporal Bell Inequalitites

Sudarshan (1983)
... a mode of awareness in which

“sensations, feelings, and insights are not

neatly categorized into chains of thoughts,

nor is there a step-by-step development of a

logical-legal argument-to-conclusion.

Instead, patterns appear, interweave,

coexist; and sequencing is made

inoperative. Conclusion, premises, feelings,

and insights coexist in a manner defying

temporal order.”

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model
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Background
Temporal Bell Inequalitites

• Specify three different instances t1, t2, t3 in a classical trajectory
in which the state of the system at ti is s(ti ) = {+1,−1}.

servable at time t = 0, then A(t) = U(t)AU−1(t) corresponds to the mea-
surement of the same observable at time t, where U(t) = exp(iHt) is the
time evolution operator. If A does not commute with U(t) (and, therefore,
not with H, then A does not commute with A(t). This makes it possible to
formulate temporal Bell inequalities with only one observable.

We are now going to derive a particular form of temporal Bell inequalities
inspired by an argument of Kochen and Specker (Kochen & Specker, 1967;
Mermin, 1990; d’Espagnat, 1979), before we show how they are violated in
the Necker-Zeno model (Sec. 5) and discuss possible interpretations of such
a violation (Sec. 6). As in the Necker-Zeno model of Sec. 3, we refer to a
simple two-state system, i.e., a system which can only assume two different
states. (Generalizations to systems with an arbitrary number of states are
possible.) The assumption of “reality” (as described above) implies that at
each moment t the system is in one of the two states. The “history” of the
system is then given by a classical trajectory which, at each moment, assumes
one of two possible values.

�

�

tt1 t2 t3

−1

+1

State

Figure 5: A classical trajectory assumes at each moment in time a definite state
(here one of two possible states). With respect to three instances t1, t2, and t3 it
falls into one of 23 = 8 possible classes (cf. Tab. 1, left). For the shown history the
states are (−1, +1, +1).

If we now specify three different moments t1, t2 and t3 and define s(t1)
to be the state of the system at time t1 (and similarly s(t2) and s(t3)), we
can say that any classical trajectory falls into one of 23 = 8 possible classes
summarized in Table 1 (left).

Let us now consider an ensemble of classical trajectories and denote by
N−(t1, t3) the number of cases in which the system is in different states at t1
and t3 (i.e., where the product of the state values is −1). Similarly, we define
N−(t1, t2) and N−(t2, t3). From Tab. 1 (right) it is obvious that any of the

15

• Any classical trajectory falls into one of 23 = 8 possible classes:
111, 11-1, 1-11, -111, 1-1-1, -11-1, -1-11, -1-1-1.

• Define N−(ti , tj) as the number of cases with s(ti ) 6= s(tj),
hence s(ti )s(tj) = −1, for each of the 8 possible trajectories.

• For each trajectory, N−(t1, t3) ≤ N−(t1, t2) + N−(t2, t3).
Normalize N to p, replace (ti , tj) by (tj − ti ):

p−(t3 − t1) ≤ p−(t2 − t1) + p−(t3 − t2) (temporal Bell inequality)

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model
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• Specify three different instances t1, t2, t3 in a classical trajectory
in which the state of the system at ti is s(ti ) = {+1,−1}.

servable at time t = 0, then A(t) = U(t)AU−1(t) corresponds to the mea-
surement of the same observable at time t, where U(t) = exp(iHt) is the
time evolution operator. If A does not commute with U(t) (and, therefore,
not with H, then A does not commute with A(t). This makes it possible to
formulate temporal Bell inequalities with only one observable.

We are now going to derive a particular form of temporal Bell inequalities
inspired by an argument of Kochen and Specker (Kochen & Specker, 1967;
Mermin, 1990; d’Espagnat, 1979), before we show how they are violated in
the Necker-Zeno model (Sec. 5) and discuss possible interpretations of such
a violation (Sec. 6). As in the Necker-Zeno model of Sec. 3, we refer to a
simple two-state system, i.e., a system which can only assume two different
states. (Generalizations to systems with an arbitrary number of states are
possible.) The assumption of “reality” (as described above) implies that at
each moment t the system is in one of the two states. The “history” of the
system is then given by a classical trajectory which, at each moment, assumes
one of two possible values.

�

�

tt1 t2 t3
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State

Figure 5: A classical trajectory assumes at each moment in time a definite state
(here one of two possible states). With respect to three instances t1, t2, and t3 it
falls into one of 23 = 8 possible classes (cf. Tab. 1, left). For the shown history the
states are (−1, +1, +1).

If we now specify three different moments t1, t2 and t3 and define s(t1)
to be the state of the system at time t1 (and similarly s(t2) and s(t3)), we
can say that any classical trajectory falls into one of 23 = 8 possible classes
summarized in Table 1 (left).

Let us now consider an ensemble of classical trajectories and denote by
N−(t1, t3) the number of cases in which the system is in different states at t1
and t3 (i.e., where the product of the state values is −1). Similarly, we define
N−(t1, t2) and N−(t2, t3). From Tab. 1 (right) it is obvious that any of the

15

• Any classical trajectory falls into one of 23 = 8 possible classes:
111, 11-1, 1-11, -111, 1-1-1, -11-1, -1-11, -1-1-1.

• Define N−(ti , tj) as the number of cases with s(ti ) 6= s(tj),
hence s(ti )s(tj) = −1, for each of the 8 possible trajectories.

• For each trajectory, N−(t1, t3) ≤ N−(t1, t2) + N−(t2, t3).
Normalize N to p, replace (ti , tj) by (tj − ti ):

p−(t3 − t1) ≤ p−(t2 − t1) + p−(t3 − t2) (temporal Bell inequality)
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• In the Necker-Zeno model, the probability for state |−〉 at time t2 under
the condition of state |+〉 at time t1 (and vice versa) is:

w+−(t1, t2) = w−+(t2, t1) = sin2 g(t2 − t1)

• Then p−(t1, t2) for anti-correlated states at t1 and t2 is:

p−(t1, t2) = 1/2(w+−(t1, t2) + w−+(t1, t2)) = sin2 g(t2 − t1)

• For τ := t3 − t2 = t2 − t1, Bell’s inequality turns into the sublinearity
condition

p−(2τ) ≤ 2p−(τ) ,

maximally violated for gτ = π/6 (sin2 g 2τ = 3/4, sin2 g τ = 1/4).

• For t0 = 1/g ≈ 300 ms we obtain τ = π/6 · t0 ≈ 157 ms
as the optimal time difference between measurements of s(ti ).

• Problem: measurements must be as non-invasive as possible
to establish a significant violation of Bell’s inequality.
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• Observables A ∈ A are (identifyable with) mappings A : Z 7→ Z
which associate to every state z ∈ Z another state A(z).

• To every observable A belongs a set specA of possible outcomes
of an evaluation (e.g., “measurement”) of A.

• With A and B, also A ◦ B is an observable.
(An addition of observables is not defined.)

• There is a unit observable 1l, spec1l = {true}, such that:
1lA = A1l ∀ A ∈ A.

• For a zero state o and a zero observable O, specO = {false}, we have:
A(o) = o, AO = OA = O, ∀ A ∈ A,
O(z) = o ∀ z ∈ Z.

• Observables P with specP = {true, false} are propositions
with the operations negation, conjunction, adjunction as usual.
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• A has the structure of a monoid, generally non-commutative. The
non-commutative case implies the concepts of:
complementarity (incompatibility) of observables, dispersive states;
entanglement (holistic correlations) among observables.
(Cf. partially Boolean algebra of propositions.)

• Generalized QT provides room for both ontic and epistemic
interpretations. An ontic interpretation of complementarity and
entanglement arises if pure states associated with incompatible
observables are not dispersion-free.

• The axiomatic framework of generalized QT does not prescribe the
decomposition of a system Σ into subsystems. In particular there is no
tensor product construction for composite systems.

• For the dynamical evolution of Σ one may assume a one-parameter
(semi-) group of endomorphisms. However, there is no prescribed kind of
dynamical evolution for subsystems of Σ and their interaction.
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“Most generalized” QT does not use key features of ordinary QT

no algebra, no space, no rule,

no action, no uncertainty, no equation,

no inequalities return
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