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Mathematical Approaches in Psychology
Generalized Quantum Theory

Some Remarks

e psychology is different from neuroscience
e mathematics is more than data processing

e mathematical precision is more than quantitative

Mathematics serves the precise formulation of conceptual
questions in terms of abstract structures (algebras, graphs, etc.).

Data processing includes the numerical quantification of
observables, statistical analysis of measurement results, etc.

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model



Mathematical Approaches in Psychology
Generalized Quantum Theory

Observational processes are interactions of an observing system O
with an observed system S (state v, observables A, B, ...):

(i) weak interaction: no significant effect of O on S,
(ii) strong interaction: effect of O on S makes a difference.
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Mathematical Approaches in Psychology
Generalized Quantum Theory

Observational processes are interactions of an observing system O
with an observed system S (state v, observables A, B, ...):

(i) weak interaction: no significant effect of O on S,
(i) strong interaction: effect of O on S makes a difference.

Physics:
(i) classical case, ABy) = BAy) commutative
(ii) quantum case, ABy # BAy non-commutative

Psychology:
Almost every action of O entails a significant effect on S.
Non-commutativity is the rule rather than the exception.

— generalized quantum theory

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model
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Bistable perception of ambiguous stimuli: the Necker cube

spontaneous switches between two possible 3—D representations
at a time scale of some seconds

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model



Necker Cube

Quantum Zeno Effect
Necker-Zeno Model

Misra and Sudarshan (1977): Quantum Zeno Effect

® Two kinds of processes in an unstable two-state system

observation”: o3 = 0

0
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> switching dynamics: o1 = (
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Misra and Sudarshan (1977): Quantum Zeno Effect

0
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® Two kinds of processes in an unstable two-state system:

observation”: o3 = 0

> switching dynamics: o1 = (
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Misra and Sudarshan (1977): Quantum Zeno Effect

0

1 > switching dynamics: o

(0103 # 0301

® Two kinds of processes in an unstable two-state system:

observation”: o3 = 0

cosgt isingt
isingt cosgt ’

® The switching dynamics is a continuous rotation according to
U(t) — er’Ht — (
with H = go1, and t, = 1/g characterizes the decay time of the
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Necker Cube

Quantum Zeno Effect
Necker-Zeno Model

Misra and Sudarshan (1977): Quantum Zeno Effect

0

® Two kinds of processes in an unstable two-state system:
-1

u _ 1
observation”: o3 = 0

> switching dynamics: o1 = (

(0103 # 0301

= o

o
~——

cosgt isingt
isingt cosgt ’

® The switching dynamics is a continuous rotation according to
U(t) = " = (
with H = go1, and t, = 1/g characterizes the decay time of the system.

® “Observation” process is a projection Py or P_ onto one of the two
eigenstates of o03.
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state |+) at time t if it was in |[+) at t =0:

® System dynamics without observations: Probability that the system is in

wi(t) = cos’(gt)
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Necker Cube
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® System dynamics without observations: Probability that the system is in
state |+) at time ¢t if it was in |[+) at t = 0:

wi(t) = cos’(gt)

® Successive observations at intervals AT: Probability that the system is in
state |+) at time t = N - AT if it was in |[+) at t = 0:

(cos’(gAT)))Y
exp(—g’AT? - N) = exp(—%t)
0

WN(t)

%
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Necker Cube
Quantum Zeno Effect
Necker-Zeno Model

® System dynamics without observations: Probability that the system is in
state |+) at time ¢t if it was in |[+) at t = 0:

wi(t) = cos’(gt)

® Successive observations at intervals AT: Probability that the system is in

state |+) at time t = N - AT if it was in |[+) at t = 0:

wn(t) = (cos’(gAT))"
AT
~ exp(—g’AT? . N) = exp(—t—zt)
0

e Effect of observations: stabilization of the system in its unstable states,

“dwell time" increases from unperturbed t, to an average time (T):

(T~ t2 /AT

o (w1 =



From Quantum Zeno to Necker-Zeno

e States |[+) and |—) correspond to the cognitive states

in the two possible representations of the Necker cube.
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From Quantum Zeno to Necker-Zeno

e States |[+) and |—) correspond to the cognitive states

in the two possible representations of the Necker cube.
® Two complementary processes:

(i) unperturbed switching dynamics with characteristic time to,

(i) projection into a representation due to successive “updates” (AT).

=] =



Introduction

Necker-Zeno Model for Bistable Perception Necker Cube
Empirical Confirmation Quantum Zeno Effect
Temporal Nonlocality Necker-Zeno Model

Selected References

From Quantum Zeno to Necker-Zeno

e States |[+) and |—) correspond to the cognitive states
in the two possible representations of the Necker cube.

e Two complementary processes:

(i) unperturbed switching dynamics with characteristic time to,

(ii) projection into a representation due to successive “updates” (AT).
® Associated cognitive time scales:

intrinsic update interval AT ~ 30 msec
(sequentialization of successive stimuli, wagon wheel illusion)
to =~ 300 msec (time for a stimulus to become conscious, P300)

(T) = 3 sec (average “dwell time” for bistable states / representations)

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model



Introduction

Necker-Zeno Model for Bistable Perception
Empirical Confirmation

Temporal Nonlocality

Selected References

Dwell Time Distribution
Discontinuous Presentation

Observed T-distribution of dwell times T: P(T) oc T? exp(—~T)

Model so far has b = 0 (purely exponential decay of P(T)),
refine with initial behavior due to effects of attention:

(a) increasing AT, (b) decreasing t,.

— solid lines: -distribution with
b =2 and t, = 300 msec

for AT =70 msec (highest "
maximum) and AT = 30 msec

P(M)

— P(T) according to Necker-Zeno o}’
model with decreasing t, ot
for AT = 70 msec (crosses) and
AT = 30 msec (squares)

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model




Dwell Time Distribution
Discontinuous Presentation

Dwell times (T) for off-times tog > 300 msec

1l i experimental values: crosses
o1 | from Kornmeier and Bach
el . | (2004), squares from Orbach
&

\

et al. (1966)

plotted curve according to
the Necker-Zeno model for
AT ~ 70 msec

.
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Dwell Time Distribution
Discontinuous Presentation

Reversal rates 1/(T) for off-times t,g < 300 msec

05 T T

experimental values with
o 1 error bars: from Kornmeier
et al. (2007)

asterisks: best fit according
o to the Necker-Zeno model,

yielding AT = 16 msec and
to ~ 210 msec

o
&
—

reversal rate

o
N
B

b 1 squares: values for AT = 30
msec and tp = 300 msec
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Background
Temporal Bell Inequalitites

® Question: Can mental events always be uniquely assigned to instances
without temporal extension?

® Bergson, James, Whitehead, etc., specious present, actual occasion, etc.:
temporally extended events within which no further temporal localization
(or segmentation) is possible. — temporal nonlocality
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Background
Temporal Bell Inequalitites

® Question: Can mental events always be uniquely assigned to instances
without temporal extension?

® Bergson, James, Whitehead, etc., specious present, actual occasion, etc.:
temporally extended events within which no further temporal localization
(or segmentation) is possible. — temporal nonlocality

® |n quantum mechanics, nonlocality is implied by non-commutative
operations and can be tested experimentally. Bell’s inequalities assume
locality so that their violation demonstrates nonlocality.
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Question: Can mental events always be uniquely assigned to instances
without temporal extension?

Bergson, James, Whitehead, etc., specious present, actual occasion, etc.:
temporally extended events within which no further temporal localization
(or segmentation) is possible. — temporal nonlocality

In quantum mechanics, nonlocality is implied by non-commutative
operations and can be tested experimentally. Bell’s inequalities assume
locality so that their violation demonstrates nonlocality.

Violations of temporal Bell inequalities would indicate temporal
nonlocality (but in quantum mechanics time and dynamics are
commutative).
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Background
Temporal Bell Inequalitites

Question: Can mental events always be uniquely assigned to instances
without temporal extension?

Bergson, James, Whitehead, etc., specious present, actual occasion, etc.:
temporally extended events within which no further temporal localization
(or segmentation) is possible. — temporal nonlocality

In quantum mechanics, nonlocality is implied by non-commutative
operations and can be tested experimentally. Bell’s inequalities assume
locality so that their violation demonstrates nonlocality.

Violations of temporal Bell inequalities would indicate temporal
nonlocality (but in quantum mechanics time and dynamics are
commutative).

In the Necker-Zeno model there are two kinds of non-commuting
dynamics, so there is a chance to violate temporal Bell inequalities in
bistable perception.

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model



Background
Temporal Bell Inequalitites

Sudarshan (1983)

. a mode of awareness in which
“sensations, feelings, and insights are not
neatly categorized into chains of thoughts,
nor is there a step-by-step development of a
logical-legal argument-to-conclusion.
Instead, patterns appear, interweave,
coexist; and sequencing is made
inoperative. Conclusion, premises, feelings,
and insights coexist in a manner defying

temporal order.”
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® Specify three different instances ti, t», t3 in a classical trajectory

in which the state of the system at t; is s(t;) = {+1, —1}.
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Temporal Bell Inequalitites

in which the state of the system at t; is s(t;) = {+1, —1}.
State

1

t
,147

® Specify three different instances ti, t», t3 in a classical trajectory

® Any classical trajectory falls into one of 2° = 8 possible classes:
111, 11-1, 1-11, -111, 1-1-1, -11-1, -1-11, -1-1-1.
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® Specify three different instances ti, t», t3 in a classical trajectory
in which the state of the system at t; is s(t;) = {+1, —1}.

State

1

& 2 t3 t
1 F I

® Any classical trajectory falls into one of 2° = 8 possible classes:
111, 11-1, 1-11, -111, 1-1-1, -11-1, -1-11, -1-1-1.

e Define N7 (t;, tj) as the number of cases with s(t;) # s(t;),
hence s(ti)s(tj) = —1, for each of the 8 possible trajectories.
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Background
Temporal Bell Inequalitites

® Specify three different instances ti, t», t3 in a classical trajectory
in which the state of the system at t; is s(t;) = {+1, —1}.

State

1

& 2 t3 t
1 F I

® Any classical trajectory falls into one of 2° = 8 possible classes:
111, 11-1, 1-11, -111, 1-1-1, -11-1, -1-11, -1-1-1.

e Define N7 (t;, tj) as the number of cases with s(t;) # s(t;),
hence s(ti)s(tj) = —1, for each of the 8 possible trajectories.

e For each trajectory, N~ (t1,t3) < N~ (t1, t2) + N~ (t2, t3).
Normalize N to p, replace (ti, t;) by (tj — t):

p (tzs—t) <p (to—t1)+ p (ts — t2) (temporal Bell inequality)

o (w1 =



® In the Necker-Zeno model, the probability for state |—) at time &, under
the condition of state |+) at time t; (and vice versa) is:

wi—(ti, &) = ws (b, t1) = sin’ g(t — 1)
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® In the Necker-Zeno model, the probability for state |—) at time &, under
the condition of state |+) at time t; (and vice versa) is:
wi—(ti, &) = ws (b, t1) = sin’ g(t — 1)
® Then p~(t1, ) for anti-correlated states at t; and t, is:

p (1, 12) = 1/2(ws(t1, £2) + w—(t1, &) = sin’ g(t2 — 1)
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® In the Necker-Zeno model, the probability for state |—) at time &, under
the condition of state |+) at time t; (and vice versa) is:
wi—(ti, &) = ws (b, t1) = sin’ g(t — 1)

® Then p~(t1, ) for anti-correlated states at t; and t, is:

p (1, 12) = 1/2(ws(t1, £2) + w—(t1, &) = sin’ g(t2 — 1)
condition

® For 7 :=1t3 — to = to — t1, Bell's inequality turns into the sublinearity
p(21) <2p (1),
maximally violated for g7 = /6 (sin? g2r = 3/4, sin>g7 = 1/4).
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® In the Necker-Zeno model, the probability for state |—) at time &, under
the condition of state |+) at time t; (and vice versa) is:

wi—(ti, &) = ws (b, t1) = sin’ g(t — 1)

® Then p~(t1, ) for anti-correlated states at t; and t, is:
p (1, 12) = 1/2(ws(t1, £2) + w—(t1, &) = sin’ g(t2 — 1)

® For 7 :=1t3 — to = to — t1, Bell's inequality turns into the sublinearity
condition _ _
p~(2r) <2p (1),
maximally violated for g7 = /6 (sin? g2r = 3/4, sin>g7 = 1/4).

® For typ = 1/g ~ 300 ms we obtain 7 = /6 - to &~ 157 ms
as the optimal time difference between measurements of s(t;).
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Background
Temporal Bell Inequalitites

In the Necker-Zeno model, the probability for state |—) at time t, under
the condition of state |+) at time t; (and vice versa) is:

W+—(t17 t2) = W—+(t27 tl) = Sin2 g(t2 - tl)

Then p~(t1, t) for anti-correlated states at t; and t, is:
p (1, 12) = 1/2(ws(t1, £2) + w—(t1, &) = sin’ g(t2 — 1)

For 7 := t3 — to = to — t1, Bell's inequality turns into the sublinearity
condition _ _

p(27) <2p~(7),
maximally violated for g7 = /6 (sin? g2r = 3/4, sin>g7 = 1/4).

For to = 1/g =~ 300 ms we obtain 7 = /6 - to ~ 157 ms
as the optimal time difference between measurements of s(t;).

Problem: measurements must be as non-invasive as possible
to establish a significant violation of Bell's inequality.

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model
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Observables A € A are (identifyable with) mappings A: Z — Z
which associate to every state z € Z another state A(z).

To every observable A belongs a set specA of possible outcomes
of an evaluation (e.g., “measurement”) of A.

With A and B, also Ao B is an observable.
(An addition of observables is not defined.)

There is a unit observable 1, specll = {true}, such that:
IA=A1 VAc A

For a zero state o and a zero observable O, specO = {false}, we have:
A(o) =0, AO=0A=0, VYA€ A,

O(z)=o0 Vze Z.

Observables P with specP = {true, false} are propositions

with the operations negation, conjunction, adjunction as usual.

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model



® A has the structure of a monoid, generally non-commutative. The
non-commutative case implies the concepts of:

complementarity (incompatibility) of observables, dispersive states;
entanglement (holistic correlations) among observables.
(Cf. partially Boolean algebra of propositions.)
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® A has the structure of a monoid, generally non-commutative. The
non-commutative case implies the concepts of:
complementarity (incompatibility) of observables, dispersive states;
entanglement (holistic correlations) among observables.
(Cf. partially Boolean algebra of propositions.)

® Generalized QT provides room for both ontic and epistemic
interpretations. An ontic interpretation of complementarity and
entanglement arises if pure states associated with incompatible
observables are not dispersion-free.
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® A has the structure of a monoid, generally non-commutative. The
non-commutative case implies the concepts of:
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entanglement (holistic correlations) among observables.
(Cf. partially Boolean algebra of propositions.)

® Generalized QT provides room for both ontic and epistemic
interpretations. An ontic interpretation of complementarity and
entanglement arises if pure states associated with incompatible
observables are not dispersion-free.
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tensor product construction for composite systems.
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A has the structure of a monoid, generally non-commutative. The
non-commutative case implies the concepts of:

complementarity (incompatibility) of observables, dispersive states;
entanglement (holistic correlations) among observables.

(Cf. partially Boolean algebra of propositions.)

Generalized QT provides room for both ontic and epistemic
interpretations. An ontic interpretation of complementarity and
entanglement arises if pure states associated with incompatible
observables are not dispersion-free.

The axiomatic framework of generalized QT does not prescribe the
decomposition of a system ¥ into subsystems. In particular there is no
tensor product construction for composite systems.

For the dynamical evolution of ¥ one may assume a one-parameter
(semi-) group of endomorphisms. However, there is no prescribed kind of
dynamical evolution for subsystems of ¥ and their interaction.

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model
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“Most generalized” QT does not use key features of ordinary QT

space,

uncertainty,

Harald Atmanspacher, IGPP Freiburg The Necker-Zeno Model
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