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1 Random variables

e Suppose that a coin 1s tossed five times. What 1s the total
number of heads?

« Intuitively, it 1s a variable because its value varies, and it 1s
random because 1ts value 1s unpredictable in a certain sense

* Formally, a random variable 1s neither random nor a variable

Definition 1: A random variable X on a sample space (set of
possible worlds) W 1s a function from W to some range (€.g.
the natural numbers)



A coin is tossed five times: W= {h,t}".
NH(w) = |[{1: w[i] = h}| (number of heads in seq. w)
NH(hthht) = 3

Question: what 1s the probability of getting three
heads 1n a sequence of five tosses?

P(ONH = 3) =g u({w: NH(w) = 3})
W(NH =3)=10 -2-5=10/32



They provide a tool for structuring possible worlds

A world can often be completely characterized by the values
taken on by a number of random variables

Example: W= {h,t}>, each world can be characterized

— by 5 random variables X, ... X5 where X; designates the
outcome of the ith tosses: X:(w) = w[i]

— an alternative way 1s in terms of Boolean random variables,
e.g. H:H(w)=11tw[1]=h, H(w)=01f w[1] = t.

— use the random variables H.(w) for constructing a new
random variable that expresses the number of tails in 5
tosses



2 Probabilistic Independence

e If two events U and V are independent (or unrelated) then
learning U should not affect he probability of V" and learning
should not affect the probability of U.

Definition 2: U and V are absolutely independent (with respect to
a probability measure p) if w(¥) # 0 implies w(U|V) = w(U) and

w(U) # 0 implies u(V0) = w(¥)

Fact 1: the following are equivalent
a. p(¥) # 0 implies pu(UV) = w(U)
b. w(U) # 0 implies p(VU) = u(¥)
c. (UNP)=wll) )



Definition 3: Two random variables X and Y are absolutely
independent (with respect to a probability measure p) 1ff for all
xe€ Value(X) and all ye Value(Y) the event X = x 1s absolutely
independent of the event Y = y.

Notation: 1 (X,Y)

Definition 4: n random variables X, ... X, are absolutely
independent iff for all 1, x,, ..., X the events X=x; and

J;,,EI(X =x.) are absolutely 1ndependent
Fact 2: If n random variables X, ...X, are absolutely independent
then p(X,= x;, X,= x, ) = IT; p(X;= x,).

Absolute independence 1s a very strong requirement, seldom met



Example: Dentist problem with three events:
Toothache (I have a toothache)
Cavity (I have a cavity)
Catch (steel probe catches in my tooth)

 IfI have a cavity, the probability that the probe catches in it
does not depend on whether I have a toothache

* 1.e. Catch is conditionally independent of Toothache given
Cavity: 1 (Catch, Toothache|Cavity)

w(Catch|ToothachenCavity) = u(Catch|Cavity)



Definition 5: 4 and B are conditionally independent given C if
wW(BNC) # 0 implies W(A|BNC) = uw(A4|C) and
wWANC) # 0 implies W(B|ANC) = w(B|C)

Fact 3: the following are equivalent if u(C) =0
a. WA|[BNC)# 0 mmplies wWA|BNC)= w(4|C)
b. WB|ANC) # 0 implies W(B|ANC)= w(B|C)
. WANB|C)=u(4|C) u(B|C)



Definition 6: Two random variables X and Y are conditionally
independ. given a random variable Z iff for all xe Value(X),
ve Value(Y) and ze Value(z) the events X=x and Y = y are
conditionally independent given the event Z = z.

Notation: 1 (X,Y|Z)

Important Notation: Instead of
(*) MX=xNY=y|Z=z2)= W(X=x|Z=z) W(Y=y|Z=z)
we simply write

(**) WX, Y1Z) = W(X|2) wY\2)

Question: How many equations are represented by (**)?



Assume three binary (Boolean) random variables Toothache,
Cavity, and Catch

Assume that Catch 1s conditionally independent of Toothache
given Cavity

The full joint distribution can now be written as
w(Toothache, Catch, Cavity) =

w(Toothache, Catch|Cavity) - W(Cavity) =
w(Toothache|Cavity) - W(Catch|Cavity) - u(Cavity)

In order to express the full joint distribution we need 24241 =5
independent numbers instead of 7! 2 are removed by the
statement of conditional independence:

w(Toothache, Catch|Cavity) = u(Toothache|Cavity) - W(Catch|Cavity)




3 Belief networks

« A simple, graphical notation for conditional independence

assertions and hence for compact specification of full joint
distribution.

e Syntax:
— a set of nodes, one per random variable
— a directed, acyclic graph (link = “directly influences™)

— a conditional distribution for each node given its parents
H(X; Parents(X)))

» Conditional distributions are represented by conditional
probability tables (CPT)
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You have a new burglar alarm 1installed

It 1s reliable about detecting burglary, but responds to minor
carthquakes

Two neighbors (John, Mary) promise to call you at work when
they hear the alarm

— John always calls when hears alarm, but confuses alarm
with phone ringing (and calls then also)

— Mary likes loud music and sometimes misses alarm!

G1iven evidence about who has and hasn’t called, estimate the
probability of a burglary



The network

Burglary
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4 Global and local semantics

Global semantics (corresponding to Halpern's quantitative
Bayesian network) defines the full joint distribution as the
product of the local conditional distributions

For defining this product, a linear ordering of the nodes of the
network has to be given: X, ... X

RO, - X,) =TT (X [Parents(X)
ordering in the example: B, E, A, J, M
wWJNMNAN-BN—-E)=

W(—=B): W= E) WA —~Bn— E) w(J]4)- w(M|4)



» Local semantics (corresponding to Halpern's qualitative

Bayesian network) defines a series of statements of conditional
independence

» Each node is conditionally independent of its nondescendants
given its parents: [ (X, Nondescentents(X)|Parents(X))

« Examples
- X>Y>2Z [, (X, 7)? [,(X,2)?
- XY Z IH(X,Z|Y)?
- Xo>Y«Z [,(X,7)? [,(X,2)?



WX, ¥, Z2) = w(X) - u(, Z1X) = u(X) - W(¥X) - w2 X, ¥)

In general: p(Xy, ..., X,) =IT"_ WX Xy, «oes X5 )
a linear ordering of the nodes of the network has to be given:
X X,

n

The chain rule 1s used to prove

the equivalence of local and global semantics



e If alocal semantics in form of the independeny statements 1s
given, 1.€.
[ (X, Nondescendants(X)|Parents(X)) for each node X of the
network,

then the global semantics results:
M(Xl cet Xn) - Hnizl u(‘Xilparents(‘Xi))a
and vice versa.
* For proving local semantics = global semantics, we assume

an ordering of the variables that makes sure that parents
appear earlier in the ordering: X; parent of X; then X; <X,



WXy, - X)) = I u(XilXy, «vvy Xi_y) chain rule
Parents(X)) < {X,, ..., X;_}

HOXIX s -ees X; _y) = p(X|Parents(X;), Rest)
local semantics: 1 ,(X, Nondescendants(X)|Parents(X))

The elements of Rest are nondescendants of X, hence we can
skip Rest

Hence, p(X, ... X,) = IT"_ p(X/Parents(X),



5 Constructing belief networks

Need a method such that a series of locally testable assertions of

conditional independence guarantees the required global
semantics

1. Chose an ordering of variables X, ..., X,
2. Fori=1ton

add X, to the network

select parents from X, ..., X; ;such that

p(X;[Parents(X;)) = R(XIXy -ors X; )

This choice guarantees the global semantics:
P(X, -y X,) =TT W(XJX, ..y X; ;) (chain rule)
= Hni: , h(Xj[Parents(X;)) by construction



What 1s an appropriate ordering?
In principle, each ordering 1s allowed!

heuristic rule: start with causes, go to direct effects

(B, E), A, (J, M) [4 possible orderings]



« Suppose we chose the ordering M, J, A, B, E
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6 Inference in belief networks

Types of inference:

Q quary variable, E evidence variable
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+ Dliagnostic inferences: from effect to causes.

P(Burglary|Johncalls)

+ Causal Inferences: from causes to effects.
P(Johncalls|Burglary)
P(MaryCalls|Burglary)

* Intercausal Inferences: between causes of a
comimon effect.

P(Burglary|&Alarm)

P(Burglary|&larm A Earthgquake)



