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1 Random variables
• Suppose that a coin is tossed five times. What is the total 

number of heads? 
• Intuitively, it is a variable because its value varies, and it is

random because its value is unpredictable in a certain sense
• Formally, a random variable is neither random nor a variable

Definition 1: A random variable X on a sample space (set of 
possible worlds) W is a function from W to some range (e.g. 
the natural numbers)



Example

• A coin is tossed five times:  W = {h,t}5.
• NH(w) = |{i: w[i] = h}|  (number of heads in seq. w)
• NH(hthht) = 3
• Question: what is the probability of getting three 

heads in a sequence of five tosses?
• µ(NH = 3) =def µ({w: NH(w) = 3})
• µ(NH = 3) = 10 ⋅2-5 = 10/32



• They provide a tool for structuring possible worlds
• A world can often be completely characterized by the values

taken on by a number of random variables
• Example: W = {h,t}5, each world can be characterized

– by 5 random variables X1, …X5 where Xi designates the 
outcome of the ith tosses: Xi(w) = w[i]

– an alternative way is in terms of Boolean random variables, 
e.g. Hi: Hi(w) = 1 if w[i] = h, Hi(w) = 0 if w[i] = t.

– use the random variables Hi(w) for constructing a new 
random variable that expresses the number of tails in 5 
tosses

Why are random variables important?



2 Probabilistic Independence
• If  two events U and V are independent (or unrelated) then 

learning U should not affect he probability of V and learning V
should not affect the probability of U.

Definition 2: U and V are absolutely independent (with respect to 
a probability measure µ) if µ(V) ≠ 0 implies µ(U|V) = µ(U) and 
µ(U) ≠ 0 implies µ(V|U) = µ(V) 

Fact 1: the following are equivalent
a. µ(V) ≠ 0 implies µ(U|V) = µ(U)
b. µ(U) ≠ 0 implies µ(V|U) = µ(V)
c. µ(U ∩ V) = µ(U) µ(V)



Definition 3: Two random variables X and Y are absolutely 
independent (with respect to a probability measure µ) iff for all 
x∈ Value(X) and all y∈ Value(Y) the event X = x is absolutely 
independent of the event Y = y. 
Notation: Iµ(X,Y) 

Definition 4: n random variables X1 … Xn are absolutely 
independent iff for all i, x1, …, xn, the events Xi= xi and 
∩j≠i(Xi=xi) are absolutely independent.

Fact 2: If n random variables X1 …Xn are absolutely independent 
then µ(X1= x1, Xn= xn ) = Πi µ(Xi= xi).

Absolute independence is a very strong requirement, seldom met

Absolute independence for random variables



Example: Dentist problem with three events: 
Toothache (I have a toothache)
Cavity (I have a cavity)
Catch (steel probe catches in my tooth)

• If I have a cavity, the probability that the probe catches in it
does not depend on whether I have a toothache

• i.e. Catch is conditionally independent of Toothache given
Cavity: Iµ(Catch, Toothache|Cavity) 

• µ(Catch|Toothache∩Cavity) = µ(Catch|Cavity)

Conditional independence: example



Definition 5: A and B are conditionally independent given C if 
µ(B∩C) ≠ 0 implies µ(A|B∩C) = µ(A|C) and 
µ(A∩C) ≠ 0 implies µ(B|A∩C) = µ(B|C) 

Fact 3: the following are equivalent if µ(C) ≠ 0
a. µ(A|B∩C) ≠ 0 implies µ(A|B∩C)= µ(A|C)        
b. µ(B|A∩C) ≠ 0 implies µ(B|A∩C)= µ(B|C) 
c. µ(A∩B|C)= µ(A|C) µ(B|C)

Conditional independence for events



Definition 6: Two random variables X and Y are conditionally 
independ. given a random variable Z iff for all x∈ Value(X), 
y∈ Value(Y) and  z∈ Value(z) the events X = x and Y = y are 
conditionally independent given the event Z = z. 
Notation: Iµ(X,Y|Z) 

Important Notation: Instead of 
(*) µ(X=x∩Y=y|Z=z)= µ(X=x|Z=z) µ(Y=y|Z=z) 
we simply write
(**) µ(X,Y|Z) = µ(X|Z) µ(Y|Z)

Question: How many equations are represented by (**)?

Conditional independence for random variables



• Assume three binary (Boolean) random variables Toothache, 
Cavity, and Catch

• Assume that Catch is conditionally independent of Toothache
given Cavity

• The full joint distribution can now be written as
µ(Toothache, Catch, Cavity) = 
µ(Toothache, Catch|Cavity) ⋅ µ(Cavity) =
µ(Toothache|Cavity) ⋅ µ(Catch|Cavity) ⋅ µ(Cavity) 

• In order to express the full joint distribution we need 2+2+1 = 5 
independent numbers instead of 7!  2 are removed by the
statement of conditional independence:
µ(Toothache, Catch|Cavity) = µ(Toothache|Cavity) ⋅ µ(Catch|Cavity)

Dentist problem with random variables



3 Belief networks
• A simple, graphical notation for conditional independence 

assertions  and hence for compact specification of full joint 
distribution.

• Syntax:
– a set of nodes, one per random variable
– a directed, acyclic graph (link ≈ “directly influences”) 
– a conditional distribution for each node given its parents

µ(Xi|Parents(Xi))
• Conditional distributions are represented by conditional 

probability tables (CPT)



n binary nodes, 
fully connected

2n -1 independent numbers

The importance of independency statements

n binary nodes
each node max. 3 parents

less than 23 ⋅ n 
independent numbers



• You have a new burglar alarm installed
• It is reliable about detecting burglary, but responds to minor 

earthquakes
• Two neighbors (John, Mary) promise to call you at work when 

they hear the alarm
– John always calls when hears alarm, but confuses alarm 

with phone ringing (and calls then also)
– Mary likes loud music and sometimes misses alarm!

• Given evidence about who has and hasn’t called, estimate the 
probability of a burglary

The earthquake example



The network

I´m at work, 
John calls to say
my alarm is
ringing, Mary 
doesn´t call. Is
there a burglary?
5 Variables
network topol-
ogy reflects
causal
knowledge



4 Global and local semantics
• Global semantics (corresponding to Halpern´s quantitative 

Bayesian network) defines the full joint distribution as the 
product of the local conditional distributions

• For defining this product, a linear ordering of the nodes of the
network has to be given: X1 … Xn

• µ(X1 … Xn) = Πn
i=1 µ(Xi|Parents(Xi))

• ordering in the example: B, E, A, J, M
• µ(J ∩ M ∩ A ∩ ¬B ∩ ¬ E) = 

µ(¬B)⋅ µ(¬ E)⋅µ(A|¬B∩¬ E)⋅µ(J|A)⋅µ(M|A)



• Local semantics (corresponding to Halpern´s qualitative 
Bayesian network) defines a series of statements of conditional 
independence

• Each node is conditionally independent of its nondescendants
given its parents: Iµ(X, Nondescentents(X)|Parents(X)) 

• Examples
– X →Y→ Z Iµ (X, Y) ? Iµ (X, Z) ? 

– X ←Y→ Z Iµ (X, Z|Y) ?

– X → Y ← Z Iµ (X, Y) ? Iµ (X, Z) ? 

Local semantics



• µ(X, Y, Z) = µ(X) ⋅ µ(Y, Z |X) = µ(X) ⋅ µ(Y|X) ⋅ µ(Z| X, Y)

• In general: µ(X1, …, Xn) = Πn
i=1 µ(Xi|X1, …, Xi −1)

• a linear ordering of the nodes of the network has to be given: 
X1, …, Xn

• The chain rule is used to prove 
the equivalence of local and global semantics

The chain rule



• If a local semantics in form of the independeny statements is
given, i.e. 
Iµ(X, Nondescendants(X)|Parents(X)) for each node X of the 
network,
then the global semantics results: 
µ(X1 … Xn) = Πn

i=1 µ(Xi|Parents(Xi)),
and vice versa. 

• For proving  local semantics global semantics, we assume 
an ordering of the variables that makes sure that parents  
appear earlier in the ordering: Xi parent of Xj then Xi < Xj

Local and global semantics are equivalent



• µ(X1, …, Xn) = Πn
i=1 µ(Xi|X1, …, Xi −1)  chain rule

• Parents(Xi) ⊆ {X1, …, Xi −1}

• µ(Xi|X1, …, Xi −1) = µ(Xi|Parents(Xi), Rest)

• local semantics: Iµ(X, Nondescendants(X)|Parents(X)) 

• The elements of Rest are nondescendants of Xi, hence we can 
skip Rest

• Hence, µ(X1 … Xn) = Πn
i=1 µ(Xi|Parents(Xi)),

Local semantics global semantics



5 Constructing belief networks
Need a method such that a series of locally testable assertions of 
conditional independence guarantees the required global
semantics  

1. Chose an ordering of variables X1, …, Xn
2. For i = 1 to n

add Xi to the network
select parents from X1, …, Xi −1 such that 
µ(Xi|Parents(Xi)) = µ(Xi|X1, …, Xi −1) 

This choice guarantees the global semantics:
µ(X1, …, Xn) = Πn

i=1 µ(Xi|X1, …, Xi −1)  (chain rule)
= Πn

i=1 µ(Xi|Parents(Xi)) by construction



• What is an appropriate ordering?

• In principle, each ordering is allowed!

• heuristic rule: start with causes, go to direct effects

• (B, E), A, (J, M)  [4 possible orderings] 

Earthquake example with canonical ordering



Earthquake example with noncanonical ordering

• Suppose we chose the ordering M, J, A, B, E

• µ(J|M) = µ(J) ?   
• µ(A|J,M) = µ(A|J) ?   µ(A|J,M) = µ(A) ? 
• µ(B|A,J,M) = µ(B|A) ? 
• µ(B|A,J,M) = µ(B) ? 
• µ(E|B, A,J,M) = µ(E|A) ? 
• µ(E|B,A,J,M) = µ(E|A,B) ? 

MaryCalls
JohnCalls

Alarm

Burglary
Earthquake

No
No

Yes
No

Yes
No



6 Inference in belief networks

Types of inference: 

Q quary variable, E evidence variable



Kinds of inference


