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0 Introduction 
 

 

Standard way to represent uncertainty: 
 

 Bayesian probability theory 
 

But probability is not the only way to represent uncertainty. 
 

 Belief functions 
 Possibility measures 

 Ranking functions 
 Relative likelihood 

 Defaults
 

 
Considering many different approaches makes it easier to 
illustrate the relative advantages and disadvantages of each 
approach handling likelihood. 
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1 Motivating examples 
 

 

Some puzzles and problems should convince you that 
reasoning about uncertainty can be subtle and that it requires a 
careful mathematical analysis 
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Example 1: Classical urn examples 
  
 There is an urn containing three white and two black balls. 

You grab two at random. What is the probability that you 
grab two white ones? 

 
 There are three urns labeled one, two, three. These urns 

contain, respectively, three white and three black balls, four 
white and two black balls, and one white and two black 
balls. An experiment consists of selecting an urn at random, 
then drawing a ball from it. Find the probability of drawing 
a black ball. 
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Example 2: Monty Hall puzzle 
Suppose you’re in a game show and given a choice of three 
doors. Behind one is a car. Behind the others are goats. You 
pick door 1. Before opening door 1, host Monty Hall (who 
knows what is behind each door) opens door 3, which has a 
goat. He then asks you if you still want to take what’s behind 
door 1, or to take instead what’s behind door 2. Should you 
switch? 
 

1 2 3 
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Example 3: a medical decision problem 
 

 
Consider a doctor who is examining a patient Eric. The doctor 
can see that Eric has a cough, no temperature, and red hair. 
According to his medical textbook, 60 % of people with a 
cough have a flue and 80% of people with flue have a 
temperature. This is all the information he has that is relevant 
to the problem. Should he proceed under the assumption that 
Eric has a flue? 



 7 

Example 4: Unknown probabilities 
 

Compare:   Tossing a coin which is known to be fair 
    Tossing a coin which is not known to be fair 
 
In both cases, we assign a chance of 50% to the proposition 
that the result is heads. In the first case this assignment is 
based on probabilistic knowledge, in the second case it is 
based on the absence of such knowledge. 
 

 Generalizations of probability theory which do allow the 
representation of ignorance. Partial variants of probability 
theory (probabilities are partially specified) 
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Example 5: 100 Marbles 
 

Suppose that a bag contains 100 marbles; 30 are known to be 
red, and the remainder are known to be blue or yellow, 
although the exact proportion of blue and yellow is not known. 
What is the likelihood that a marble taken out of the bag is 
yellow?  
 
Three bets: 
Br: pays $1 if the marble is red and 0 otherwise 
Bb: pays $1 if the marble is blue and 0 otherwise 
By: pays $1 if the marble is yellow and 0 
otherwise 
 
People invariantly prefer Br  to Bb and By . Why? 
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Example 6: Three-prisoners puzzle 
 

Three prisoners, A, B, C, are locked in their sells. It is 
common knowledge that two of them will be executed the next 
day and the other pardoned. Only the guard knows who will be 
executed. Prisoner A ask the guard a favour: “Since either B or 
C is certainly going to be executed, you will give me no 
information about my own chances if you give me the name of 
one man, either B or C, who is going to be executed.” 
Accepting this argument, the guard truthfully replies, “B will 
be executed”. Prisoner A feels happier because before the 
guard replied, his own chance of execution was 2/3, but 
afterwards there are only two people, himself and C, who 
could be the one not executed, and so his chance of execution 
is 1/2. Is this argumentation correct? 
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2 Possible worlds 
 

 

Most representations of uncertainty start with a set of possible 
worlds (also called states or elementary outcomes). In prob-
ability the set of all possible worlds is called sample space W. 

Example: Tossing a die.  
Six possible worlds W= {w1,w2,w3,w4,w5,w6}    
 
The objects that are known (or considered possible or 
probable) are called propositions (or events). Propositions are 
modelled as subsets of W. 
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Representing the three prisoner puzzle 
 

Are three worlds enough? 
 
a  (representing a world where prisoner a is pardoned) 
b (representing a world where prisoner b is pardoned) 
c (representing a world where prisoner c is pardoned) 
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Representing the three prisoner puzzle 
 

Are three worlds enough? 
 

a  (representing a world where prisoner a is pardoned) 
b (representing a world where prisoner b is pardoned) 
c (representing a world where prisoner c is pardoned) 
 

No!! 
 

W = {(a,b), (a,c), (b,c), (c,b)} 
where (x,y) represents a  world where prisoner x is pardoned 
and the guard says that y will be executed. 
  

lives-a =   {(a,b), (a,c)}  (a lives) 
lives-b =   {(b,c)}   (b lives) 
says-b =   {(a,b), (c,b)}  (the guard says b) 
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Epistemic space 
 

The proposition “the die landed on an even number” 
corresponds to a set W0 = {w2,w4,w6}. Similarly, the proposit-
ion "the guard says b" corresponds to a set {(a,b), (c,b)}. 
 

If W0 ⊆ W represents the agent’s knowledge (and uncertainty) 
about the world, then we call (W, W0) an epistemic space. 
 

Definition 1: Let Σ = (W, W0) be a epistemic space. 
 Σ ⊩ Possiblex(U) iff U∩W0≠∅  (x considers U possible) 
 Σ ⊩ Knowx(U) iff W0⊆U  ( x knows U) 

 

Fact 1: An agent knows U if and only if he doesn’t consider 
¬U (the complement of U) possible:  

 Σ ⊩ Knowx(U) ⇔ Σ ⊭ Possiblex(¬U) 
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More facts 
 

Fact 2: Let Σ = (W, W0) be an epistemic space, and U,V ⊆ W 
propositions. Further define U→V =def ¬U∪V: Then it holds: 
 

 Knowx(U) & Knowx(V) ⇔ Knowx(U∩V) 

      (Σ ⊩… is omitted) 

 Possiblex(U) or Possiblex(V) ⇔ Possiblex(U∪V) 
 Knowx(U→V) & Knowx(U) ⇒ Knowx(V) 
 U⊆V  & Knowx(U) ⇒ Knowx(V) 
 W0⊆V ⇒ Knowx(V) 

 
Proofs are exercises. 



 15 

Remarks 
 

 The choice of the set of possible worlds encodes many of 
the assumptions the modeler is making about the domain. 
There is not necessarily a single “right” set of possible 
worlds to use 

 

 In the first part of the course we focus on the single-agent 
case. Multiple agents are not discussed here. 

 

 I generally assume that the set W of possible worlds is 
finite. Most but not all results we discuss hold without 
change if W is infinite. 
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3 Probability measures 
 

 

Most presentations of probability theory start with a set of 
events W and assigns to all subsets of W a probability µ. 
However, example 5 (100 marbles) shows that this is not 
always appropriate: 

W = {R,B,Y} 
µ({R})= 0.3, µ({B,Y})= 0.7, µ(∅)=0, µ({R,B,Y})=1 

For all other subsets no probabilities are defined! 
 
The system {∅, {R}, {B,Y}, {R,B,Y}} is called an algebra 
over W. 
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Algebras 
 

Definition 2: 
An algebra over W is a set ℱ of subsets of W that contains W 
and is closed under union and complementation. 
That means, if U∈ ℱ and V∈ ℱ, then U∪V ∈ ℱ and ¬U∈ ℱ. 
 
Note that an algebra is closed under intersection, since 
U∩V= ¬(¬U∪¬V) 
 
Example: Show that 2W  (the set of all subsets of W) is an 
algebra! 
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Probability space 
 

Definition 3: 
A probability space is a tuple (W, ℱ, µ), where  ℱ is an algebra 
over W and µ: ℱ → [0,1] satisfies the following two 
properties: 

P1. µ(W)=1 
P2. µ(U∪V) =  µ(U)+µ(V) if U and V are disjoint 

elements of ℱ. 
 

Simple consequence: µ(∅) = 0 
 

Classical case: ℱ = 2W, i.e. the algebra consist of all subsets of 
W. In this case we write (W, µ) instead of  (W, ℱ, µ) for the 
probability space.  
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Some facts 
 

Fact 3: Let (W, µ) be a (classical) probability space, and write 
µ({u}) = µ(u). Then for U ⊆ W we have: µ(U) = ∑u∈U µ(u)  
 

For the proof we need  
 

Fact 4: µ(U1∪…∪ Uk) = µ(U1) + …+µ(Uk), for pairwise 
disjoint sets U1, …, Uk (finite additivity). 
 

Call a (classical) probability space uniform if µ(u) = µ(u’) for 
all u,u’ ∈ W. 
 

Fact 5: In a classical and uniform probability space we have 
µ(U)= |U| / |W|   (where |.| designates the cardinality of the 
corresponding set). 
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Two tosses of a coin 
 

W = {hh, ht, th, tt}  
Uniformity: all worlds are equally probable 
µ(hh) = µ(ht) = µ(th) = µ(tt) = 1/4.  
 
H1 = {hh, ht}, H2 = {hh, th} 
T1 = {tt, th}, T2 = {tt, ht} 
µ(H1) = µ(H2) = µ(T1) = µ(T2) = 1/2 
 
Independence (this will be introduced later more systematically) 
µ(H2| H1) =def µ(H2 ∩ H1)  /   µ(H1) =  µ(H2) 
   1/4  /   1/2 = 1/2 
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The three prisoner puzzle again 
 

W = {(a,b), (a,c), (b,c), (c,b)} where (x,y) represents a  world 
where prisoner x is pardoned and the guard says that y will be 
executed. 
  

Principle of Indifference 
lives-a =   {(a,b), (a,c)}  1/3 
lives-b =   {(b,c)}   1/3 
lives-c =   {(c,b)}   1/3   
 
But what is the probability of (a,b)? That depends on the 
guard's strategy in the one case where he has a choice, namely 
when a lives: µ(says-b|lives-a) =  α. 
Make a plausible choice of  α and calculate µ({(a,b)})! 
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Epistemic spaces and probabilities 
 

Let (W, W’) be the epistemic space of an agent x. Then we can 
take (W, 2W’, µ) with a uniform µ as the associated probability 
space of the agent (who considers all possible states as equally 
probable) 
 
Fact 6: Let (W, 2W’, µ) be the associated probability space of  
the epistemic space Σ = (W, W’) of agent x. Then for each U ⊆ 
W: 
 

 Σ ⊩ Possiblex(U) iff µx(U)≠0,  
 Σ ⊩ Knowx(U) iff µ x(U)=1 
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4 Lower and upper probabilities 
 

 

Suppose Alice has a coin and she knows that it has either bias 
2/3 (head is preferred) or bias 1/3 (tail preferred).  But she 
doesn’t know which bias is more likely. How to represent this 
situation? 
 

W = {h, t}  
Because of bias uniformity doesn’t longer hold.  
We have to assume two probability measures:  
µ2/3(h) = 2/3, µ2/3(t) = 1/3;  
µ1/3(h) = 1/3, µ1/3(t) = 2/3 
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Definition of lower and upper probability 
 

Because we do not know how likely it is that the coin is head-
biased (tail-biased) we can give only an interval for the 
probability that head/tail results after tossing:  
µ(h) ∈ [1/3, 2/3],  µ(t) ∈ [1/3, 2/3]. 
 

Definition 4: Given a set P of probability measures defined on 
a algebra  over a (finite) set W, and U ∈ℱ, define  
 

 P*(U) = min{µ(U): µ∈P}   (lower probability) 
 P*(U) = max{µ(U): µ∈P} (upper probability) 

 

P = {µ2/3, µ1/3};  P*(h) = min {2/3, 1/3} = 1/3  
                          P*(h) = max {2/3, 1/3} = 2/3 
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5 Inner and outer measures 
 

 
100 marble example again: Suppose that a bag contains 100 
marbles; 30 are known to be red, and the remainder are known 
to be blue or yellow, although the exact proportion of blue and 
yellow is not known. What is the likelihood that a marble 
taken out of the bag is yellow?  

W = {R,B,Y} 
µ({R})= 0.3, µ({B,Y})= 0.7, µ(∅)=0, µ({R,B,Y})=1 

Intuitively, we feel that  µ({Y}) ∈ [0, 0.7]. How to calculate 
the interval in this case? 
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Inner and outer measure 
 

Definition 5: Let (W, ℱ, µ) be a finite probability space. Then 
the inner and outer measures µ* and µ* induced by µ are 
defined as follows: 
 

 For every U ⊆ W, µ*(U) = max{µ(V): V ⊆ U, V∈ ℱ} 
 For every U ⊆ W, µ*(U) = min{µ(V): V ⊇ U, V∈ ℱ} 

 

100 marble example again:  
µ({R})= 0.3, µ({B,Y})= 0.7, µ(∅)=0, µ({R,B,Y})=1 
µ*(Y) = max{0} = 0 
µ*(Y) = min{0.7, 1} = 0.7  
 

Remark: In the case of probability spaces with infinite W we 
have to replace max by sup and min by inf, respectively. 
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Connection to lower and upper probability 
 

Given a probability space (W, ℱ, µ), we can try to extend µ by 
considering all algebras (W, 2W, µ’) such that (W, ℱ, µ) is a 
subalgebra of the classical algebra (W, 2W, µ’). That means: 
µ’(U)= µ(U) for all U∈ℱ 
 

Definition 6: Let µ be a probability measure on a subalgebra  
(W, ℱ, µ). Then the extension set Pµ is defined as set of all 
extensions of µ to the classical algebra.  
 

Remark: the lower and upper probabilities then become: 
 

 For every U ⊆ W, (Pµ)*(U) = min{µ’(U): µ’∈ Pµ} 
 For every U ⊆ W, (Pµ)*(U) = max{µ’(U): µ’∈ Pµ} 
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Facts 
 

Fact 7: Let µ be a probability measure on a subalgebra  
(W,ℱ,µ) and let Pµ consist of all extensions of µ to the classical 
algebra. Then µ*(U) = (Pµ)*(U) and µ*(U) = (Pµ)*(U). 
 

Fact 8: The inner and the outer measure are dual, i.e. 
µ*(U) = 1−µ*(¬U). 
 

Fact 9: The following inequalities hold for inner and outer 
measure: 
 µ*(U) ≤ µ*(U) 
 If U⊆V then µ*(U)≤µ*(V) and µ*(U)≤µ*(V) [monotonicity] 
 µ*(U∪V) ≥ µ*(U)+µ*(V) for disjoint U,V [superadditivity] 
 µ*(U∪V) ≤ µ*(U)+µ*(V) for disjoint U,V [subadditivity] 
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6 Possibility measures 
 

 

Classical probability theory start with a set of events W and 
assigns to all subsets of W a probability µ. Possibility theory is 
just another approach to assign numbers to subsets of W. 
Instead of the probabilistic axioms P we assume axioms Poss: 
In the infinite case we have to replace max by sup(reme). 

P1. µ(∅)=0 
P2. µ(W)=1 
P3. µ(U∪V) =  µ(U)+µ(V) 

if U and V are disjoint
 

Poss1. Poss(∅)=0 
Poss2. Poss(W)=1 
Poss3. Poss(U∪V) =  

max(Poss(U),Poss(V)) 
if U and V are disjoint 
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Facts 
 

Fact 10: Let W be a finite set of possible worlds and Poss a 
possibility measure satisfying Poss1-Poss3 (not necessarily 
defined for all subsets of W).  
 

 Poss3 holds even if U and V are not disjoint! 
 

 If the possibility measure is defined for all subset of (finite) 
W, then it can be characterized by its behaviour on singleton 
sets:  

Poss(U) = maxu∈U Poss(u) 
 

 Under the same conditions at least one element in W must 
have maximum possibility: ∃w∈W [Poss(w) = 1]. 
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Dual 
 

The dual of possibility is called necessity and is defined in the 
usual way: Nec(U) = 1−Poss(¬U) 
 

Fact 11: Let W be a set of possible worlds. Then  
Nec(U∩V) =  min(Nec(U), Nec(V)) 
 
Example: Poss is defined on W = {1, …, 10} by taking  
Poss(U) = maxn∈U (n/10) and stipulating Poss(∅)=0. 
 

Then Poss(n) = n/10; Nec(n)=0 if n<10, and Nec(10) = 1/10 
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Infinite case 
 

Example: Poss is defined on ℕ (set of natural numbers) by 
taking Poss(U) = supn∈U (1-1/n) and stipulating Poss(∅)=0. 
[that means that Poss(n) = 1-1/n for any n∈ℕ]  
 
It can be shown that 
 Poss(W) = 1 
 Poss(U∪V) = max(Poss(U),Poss(V)) 

 

Hence, Poss is a possibility measure. 
 
Possible exercise: Calculate Nec(n)! 
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Interpretation and importance 
 

 Degree of surprise (low possibility indicates high degree 
of surprise). See next section about ranking functions! 

 

 The most common interpretation given to possibility (and 
necessity) is not in terms of surprise/likelihood but as 
degree of uncertainty regarding the truth of a vague 
statement. Even if there is no uncertainty about John’s 
actual height (say 1.78 meters) there might be uncertainty 
about the statement S: “John is tall”. This can be 
described, by assuming Nec(S) = 0.3, Poss(S) = 0.7 

 

 Possibility measures are compositional w.r.t. “∪” 
 

 Possibility measures can be used to define defaults. 
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7 Ranking functions 
  

 Ranking functions are very similar in spirit to possibility 
measures. 

 

 A ranking function κ assigns to the subsets of W a natural 
number or infinity; that is any κ: 2W → ℕ*, where ℕ* = 
ℕ*∪{∞} 

 

 The numbers can be thought of as denoting degrees of 
surprise; that is  κ(U) is the degree of surprise the agent 
would feel if the actual world were in U. 0 denotes 
“unsurprising”, …, ∞ denotes “so surprising as to be 
impossible”.  
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Axioms 
 

 
 Again, Rk3 holds eve if U and V are not disjoint 

 

 As with probability and possibility, a ranking function is 
defined by its behaviour on singletons in finite spaces:  

κ(U) = minu∈U κ(u) 

Poss1. Poss(∅) = 0 
Poss2. Poss(W) = 1 
Poss3. Poss(U∪V) =  

max(Poss(U),Poss(V)) 
if U and V are disjoint 

Rk1. κ(∅) = ∞ 
Rk2. κ(W) = 0 
Rk3.  κ(U∪V) =  

 min(κ(U),κ(V)) 
if U and V are disjoint 
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Facts 
 

Fact 12: Ranking functions can be viewed as possibility 
measures. Given a ranking function κ define the possibility 
measure Possκ by taking 

Possκ(U) =  1/(1+κ(U)) 
 

It is not difficult to prove that Possκ satisfies the three axioms 
 

Poss1. Poss(∅) = 0 
Poss2. Poss(W) = 1 
Poss3. Poss(U∪V) = max(Poss(U),Poss(V)) if U and V are 

disjoint 
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Interpretation 
 

Ranking functions can also be viewed as providing a way of 
doing order-of-magnitude probabilistic reasoning.  
Let ε << 1 and take µ(U) = εκ(U). Then 
 

 µ(W) = 1 
 µ(∅) = 0 
 µ(U∪V) = εκ(U ∪ V) = max(εκ(U), εκ(V)) ≈ εκ(U)+εκ(V) =  
µ(U) + µ(V) for disjoint U and V 

 
With this interpretation the ranking function defines extremely 
small probabilities (in terms of infinitesimal ε). The laws for 
the ranking functions correspond to the laws of probability in 
this limit. 
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8 Choosing a formalism 
  
Probability: Well understood, many technical results have been 
proved. Dutch book arguments that “probability” is the only 
rational way to represent uncertainty. 
 
Sets of probability measures, inner & outer measures: Many 
advantages of probability, deals better in settings where there 
is uncertainty about the likelihood. 
 
Possibility measure, ranking functions: Deals well with default 
reasoning and counterfactual reasoning. 


